Invariant tori of nonlinear Schrodinger equation

被引:11
|
作者
Gao, Yixian [1 ]
Li, Yong [1 ]
Zhang, Jin [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
关键词
Schrodinger equation; Invariant tori; Neumann boundary conditions; Dirichlet-Neumann boundary conditions; General boundary conditions; QUASI-PERIODIC SOLUTIONS; WAVE EQUATIONS; BOUNDARY-CONDITIONS;
D O I
10.1016/j.jde.2009.01.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider one-dimensional nonlinear Schrodinger equation iu(t) - u(xx) + V(x)u + f(|u|(2))u = 0 on [0, pi] x R under lthe boundary conditions a(1)u(t, 0) - b(1)u(x)(t, 0) = 0, a(2)u(t, pi) + b(2)u(x)(t, pi) = 0, a(i)(2) + b(i)(2) not equal 0, for i = 1, 2. It is proved that for a prescribed and analytic positive potential V(x), the above equation admits small-amplitude quasi-periodic solutions corresponding to d-dimensional invariant tori of the associated infinite-dimensional dynamical system. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3296 / 3331
页数:36
相关论文
共 50 条