Invariant tori of nonlinear Schrodinger equation

被引:11
|
作者
Gao, Yixian [1 ]
Li, Yong [1 ]
Zhang, Jin [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
关键词
Schrodinger equation; Invariant tori; Neumann boundary conditions; Dirichlet-Neumann boundary conditions; General boundary conditions; QUASI-PERIODIC SOLUTIONS; WAVE EQUATIONS; BOUNDARY-CONDITIONS;
D O I
10.1016/j.jde.2009.01.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider one-dimensional nonlinear Schrodinger equation iu(t) - u(xx) + V(x)u + f(|u|(2))u = 0 on [0, pi] x R under lthe boundary conditions a(1)u(t, 0) - b(1)u(x)(t, 0) = 0, a(2)u(t, pi) + b(2)u(x)(t, pi) = 0, a(i)(2) + b(i)(2) not equal 0, for i = 1, 2. It is proved that for a prescribed and analytic positive potential V(x), the above equation admits small-amplitude quasi-periodic solutions corresponding to d-dimensional invariant tori of the associated infinite-dimensional dynamical system. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3296 / 3331
页数:36
相关论文
共 50 条
  • [41] Invariant tori for the cubic Szegö equation
    Patrick Gérard
    Sandrine Grellier
    Inventiones mathematicae, 2012, 187 : 707 - 754
  • [42] Invariant tori for the cubic Szego equation
    Gerard, Patrick
    Grellier, Sandrine
    INVENTIONES MATHEMATICAE, 2012, 187 (03) : 707 - 754
  • [43] Invariant tori for a fifth order nonlinear partial differential equation with unbounded perturbation
    Cui, Wenyan
    Mi, Lufang
    Zhang, Jumei
    Yin, Li
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2018, 15 (03) : 183 - 199
  • [44] 2D-defocusing nonlinear Schrodinger equation with random data on irrational tori
    Fan, Chenjie
    Ou, Yumeng
    Staffilani, Gigliola
    Wang, Hong
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (01): : 142 - 206
  • [45] Invariant measures for the 2D-defocusing nonlinear Schrodinger equation
    Bourgain, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) : 421 - 445
  • [46] On blowup for the pseudo-conformally invariant nonlinear Schrodinger equation II
    Nawa, H
    Tsutsumi, M
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1998, 51 (04) : 373 - 383
  • [47] Strichartz estimates for the Schrodinger equation on irrational tori
    Deng, Yu
    Germain, Pierre
    Guth, Larry
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (09) : 2846 - 2869
  • [48] The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation
    Cong, Hongzi
    Yuan, Xiaoping
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (03): : 759 - 786
  • [49] Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation
    Kuksin, S
    Poschel, J
    ANNALS OF MATHEMATICS, 1996, 143 (01) : 149 - 179
  • [50] SELF-SIMILAR SOLUTIONS OF THE PSEUDOCONFORMALLY INVARIANT NONLINEAR SCHRODINGER-EQUATION
    KAVIAN, O
    WEISSLER, FB
    MICHIGAN MATHEMATICAL JOURNAL, 1994, 41 (01) : 151 - 173