Invariant tori for the cubic Szego equation

被引:30
|
作者
Gerard, Patrick [2 ]
Grellier, Sandrine [1 ]
机构
[1] Univ Orleans, Federat Denis Poisson, MAPMO UMR 6628, Dept Math, F-45067 Orleans 2, France
[2] Univ Paris 11, UMR 8628, CNRS, Lab Math Orsay, F-91405 Orsay, France
关键词
SCHRODINGER; VARIABLES;
D O I
10.1007/s00222-011-0342-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We continue the study of the following Hamiltonian equation on the Hardy space of the circle, i partial derivative(t)u = Pi(vertical bar u vertical bar(2)u), where Pi denotes the Szego projector. This equation can be seen as a toy model for totally non dispersive evolution equations. In a previous work, we proved that this equation admits a Lax pair, and that it is completely integrable. In this paper, we construct the action-angle variables, which reduces the explicit resolution of the equation to a diagonalisation problem. As a consequence, we solve an inverse spectral problem for Hankel operators. Moreover, we establish the stability of the corresponding invariant tori. Furthermore, from the explicit formulae, we deduce the classification of orbitally stable and unstable traveling waves.
引用
收藏
页码:707 / 754
页数:48
相关论文
共 50 条
  • [41] The invariant tori of knot type and the interlinked invariant tori in the Nose-Hoover oscillator
    Wang, Lei
    Yang, Xiao-Song
    EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (03):
  • [42] Invariant tori in nonlinear oscillations
    柳彬
    王奕倩
    ScienceinChina,SerA., 1999, Ser.A.1999 (10) : 1047 - 1058
  • [43] Modular invariant of quantum tori
    Castano-Bernard, C.
    Gendron, T. M.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2014, 109 : 1014 - 1049
  • [44] Renormalization for breakup of invariant tori
    Apte, A
    Wurm, A
    Morrison, P
    PHYSICA D-NONLINEAR PHENOMENA, 2005, 200 (1-2) : 47 - 59
  • [45] A survey on bifurcations of invariant tori
    Hanssmann, H
    NEW ADVANCES IN CELESTIAL MECHANICS AND HAMILTONIAN SYSTEMS, 2004, : 109 - 121
  • [46] Invariant tori in dissipative hyperchaos
    Parker, Jeremy P. P.
    Schneider, Tobias M. M.
    CHAOS, 2022, 32 (11)
  • [47] HERMAN WRITINGS ON INVARIANT TORI
    YOCCOZ, JC
    ASTERISQUE, 1992, (206) : 311 - 345
  • [48] Invariant tori in nonlinear oscillations
    Bin Liu
    Yiqian Wang
    Science in China Series A: Mathematics, 1999, 42 : 1047 - 1058
  • [49] INVARIANT 2-TORI IN THE TIME-DEPENDENT GINZBURG-LANDAU EQUATION
    TAKAC, P
    NONLINEARITY, 1992, 5 (02) : 289 - 321
  • [50] The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation
    Cong, Hongzi
    Yuan, Xiaoping
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (03): : 759 - 786