INVARIANT TORI FOR THE HAMILTONIAN DERIVATIVE WAVE EQUATION WITH HIGHER ORDER NONLINEARITY

被引:0
|
作者
Gao, Meina [1 ]
机构
[1] Shanghai Polytech Univ, Sch Math Phys & Stat, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金;
关键词
KAM theory; invariant tori; Hamiltonian derivative nonlinear wave equation; QUASI-PERIODIC SOLUTIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; KAM THEOREM; PERTURBATIONS;
D O I
10.3934/cpaa.2023033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will study the Hamiltonian derivative wave equation with higher order nonlinearity ytt - yxx + my + (Dy)(5) = 0, x is an element of T :- R/2 pi Z, where m > 0 is a potential and D := root -partial derivative xx + m. We will prove that, for any integer b >= 2, the above equation admits many small amplitude quasi-periodic solutions corresponding to b -dimensional invariant tori of an associated infinite dimensional Hamiltonian system. The proof is based on infinite dimensional KAM theory and partial Birkhoff normal form.
引用
收藏
页码:1429 / 1455
页数:27
相关论文
共 50 条
  • [21] Persistence of elliptic invariant tori for Hamiltonian systems
    Huang, QD
    Cong, FZ
    Li, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (02) : 241 - 260
  • [22] Persistence of elliptic invariant tori for Hamiltonian systems
    Qingdao, Huang
    Fuzhong, Cong
    Yong, Li
    Nonlinear Analysis, Theory, Methods and Applications, 2001, 45 (02): : 241 - 260
  • [23] Lower dimensional invariant tori with prescribed frequency for nonlinear wave equation
    Geng, Jiansheng
    Ren, Xiufang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (11) : 2796 - 2821
  • [24] Invariant tori for 1D quintic nonlinear wave equation
    Gao, Meina
    Liu, Jianjun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) : 8533 - 8564
  • [25] CONSERVATION OF HYPERBOLIC INVARIANT TORI FOR HAMILTONIAN SYSTEMS
    GRAFF, SM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (01) : 1 - 69
  • [26] Universality for the breakup of invariant tori in Hamiltonian flows
    Chandre, C
    Govin, M
    Jauslin, HR
    Koch, H
    PHYSICAL REVIEW E, 1998, 57 (06): : 6612 - 6617
  • [27] INVARIANT TORI FOR THE PRESSURE-JUMP HAMILTONIAN
    Mathematics Institute, University of Warwick, Coventry
    CV4 7AL, United Kingdom
    arXiv, 2331, (January 17, 2025):
  • [28] Weakly Mixing Invariant Tori of Hamiltonian Systems
    Oliver Knill
    Communications in Mathematical Physics, 1999, 204 : 85 - 88
  • [30] On Invariant Tori with Prescribed Frequency in Hamiltonian Systems
    Zhang, Dongfeng
    Xu, Junxiang
    Wu, Hao
    ADVANCED NONLINEAR STUDIES, 2016, 16 (04) : 719 - 735