Updating knowledge in estimating the genetics parameters: Multi-trait and Multi-Environment Bayesian analysis in rice

被引:0
|
作者
Azevedo, Camila Ferreira [1 ]
Valiati Barreto, Cynthia Aparecida [2 ]
Suela, Matheus Massariol [2 ]
Nascimento, Moyses [1 ]
da Silva Junior, Antonio Carlos [2 ]
Campana Nascimento, Ana Carolina [1 ]
Cruz, Cosme Damiao [2 ]
Soraes, Plinio Cesar [3 ]
机构
[1] Univ Fed Vicosa, Dept Estat, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Biol Geral, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[3] Empresa Pesquisa Agropecuaria Minas Gerais, Ave Jose Candido da Silveira 1647, BR-31170495 Belo Horizonte, MG, Brazil
来源
SCIENTIA AGRICOLA | 2023年 / 80卷
关键词
MCMC; genetic correlation; genetic improvement; heritability; prior distribution; MIXED MODELS;
D O I
10.1590/1678-992X-2022-0056
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Among the multi-trait models selected to study several traits and environments jointly, the Bayesian framework has been a preferred tool when constructing a more complex and biologically realistic model. In most cases, non-informative prior distributions are adopted in studies using the Bayesian approach. However, the Bayesian approach presents more accurate estimates when informative prior distributions are used. The present study was developed to evaluate the efficiency and applicability of multi-trait multi-environment (MTME) models within a Bayesian framework utilizing a strategy for eliciting informative prior distribution using previous data on rice. The study involved data pertaining to rice (Oryza sativa L.) genotypes in three environments and five crop seasons (2010/2011 until 2014/2015) for the following traits: grain yield (GY), flowering in days (FLOR) and plant height (PH). Variance components, genetic and non-genetic parameters were estimated using the Bayesian method. In general, the informative prior distribution in Bayesian MTME models provided higher estimates of individual narrow-sense heritability and variance components, as well as minor lengths for the highest probability density interval (HPD), compared to their respective non-informative prior distribution analyses. More informative prior distributions make it possible to detect genetic correlations between traits, which cannot be achieved with non-informative prior distributions. Therefore, this mechanism presented to update knowledge for an elicitation of an informative prior distribution can be efficiently applied in rice breeding programs.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize
    Gevartosky, Raysa
    Carvalho, Humberto Fanelli
    Costa-Neto, Germano
    Montesinos-Lopez, Osval A.
    Crossa, Jose
    Fritsche-Neto, Roberto
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [32] Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize
    Raysa Gevartosky
    Humberto Fanelli Carvalho
    Germano Costa-Neto
    Osval A. Montesinos-López
    José Crossa
    Roberto Fritsche-Neto
    BMC Plant Biology, 23
  • [33] Multi-Trait, Multi-Environment Genomic Prediction of Durum Wheat With Genomic Best Linear Unbiased Predictor and Deep Learning Methods
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Tuberosa, Roberto
    Maccaferri, Marco
    Sciara, Giuseppe
    Ammar, Karim
    Crossa, Jose
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [34] A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.)
    Marcos Malosetti
    Jean Marcel Ribaut
    Mateo Vargas
    José Crossa
    Fred A. van Eeuwijk
    Euphytica, 2008, 161 : 241 - 257
  • [35] A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.)
    Malosetti, Marcos
    Ribaut, Jean Marcel
    Vargas, Mateo
    Crossa, Jose
    van Eeuwijk, Fred A.
    EUPHYTICA, 2008, 161 (1-2) : 241 - 257
  • [36] Assessing yield performance and stability of local sorghum genotypes: A methodological framework combining multi-environment trials and participatory multi-trait evaluation
    Kondombo, Clarisse Pulcherie
    Kabore, Pierre
    Kambou, David
    Ouedraogo, Issaka
    HELIYON, 2024, 10 (04)
  • [37] A multi-trait Bayesian method for mapping QTL and genomic prediction
    Kathryn E. Kemper
    Philip J. Bowman
    Benjamin J. Hayes
    Peter M. Visscher
    Michael E. Goddard
    Genetics Selection Evolution, 50
  • [38] A multi-trait Bayesian method for mapping QTL and genomic prediction
    Kemper, Kathryn E.
    Bowman, Philip J.
    Hayes, Benjamin J.
    Visscher, Peter M.
    Goddard, Michael E.
    GENETICS SELECTION EVOLUTION, 2018, 50
  • [39] Population parameters and selection of kale genotypes using Bayesian inference in a multi-trait linear model
    Azevedo, Alcinei Mistico
    de Andrade Junior, Valter Carvalho
    dos Santos, Albertir Aparecido
    de Sousa Junior, Aderbal Soares
    Mendes Oliveira, Altino Junior
    Miranda Ferreira, Marcos Aurelio
    ACTA SCIENTIARUM-AGRONOMY, 2017, 39 (01): : 25 - 31
  • [40] Genetic parameters and selection of maize cultivars using Bayesian inference in a multi-trait linear model
    Bocianowski, Jan
    Nowosad, Kamila
    Szulc, Piotr
    Tratwal, Anna
    Bakinowska, Ewa
    Piesik, Dariusz
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2019, 69 (06): : 465 - 478