Genetic parameters and selection of maize cultivars using Bayesian inference in a multi-trait linear model

被引:3
|
作者
Bocianowski, Jan [1 ]
Nowosad, Kamila [2 ]
Szulc, Piotr [3 ]
Tratwal, Anna [4 ]
Bakinowska, Ewa [5 ]
Piesik, Dariusz [6 ]
机构
[1] Poznan Univ Life Sci, Dept Math & Stat Methods, Wojska Polskiego 28, PL-60637 Poznan, Poland
[2] Wroclaw Univ Environm & Life Sci, Dept Genet Plant Breeding & Seed Prod, Wroclaw, Poland
[3] Poznan Univ Life Sci, Dept Agron, Poznan, Poland
[4] Natl Res Inst, Inst Plant Protect, Poznan, Poland
[5] Poznan Univ Tech, Inst Math, Poznan, Poland
[6] UTP Univ Sci & Technol, Dept Entomol & Mol Phytopathol, Bydgoszcz, Poland
关键词
Breeding progress; correlations; genetic parameters; integrated control; modelling; Zea mays L; ZEA-MAYS-L; NITROGEN USE EFFICIENCY; GRAIN-YIELD; GENOTYPIC VALUES; GROWTH; HERITABILITY; PREDICTION; PLANTS; FERTILIZATION; ACCUMULATION;
D O I
10.1080/09064710.2019.1601764
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Variance components must be obtained to estimate genetic parameters and predict breeding values. In studies which take many traits into account, it is reasonable to use the Bayesian approach for the estimation of genetic parameters. The main goal of the present research was not only to consider the genetic correlations of the examined traits, but above all to estimate unknown genetic parameters and to gain profits from the selection. Bayesian inference was also useful for the selection of the best maize varieties. It was applied to predict genetic values in the multi-traits linear model. Thirteen maize cultivars representing the traits of our interest were studied by means of Bayesian inference. The traits are the number of plants before harvest, the grain yield, the length of the ears, the mass of leaves and the number of ears. The experiment involved a randomised block design with four replications and ten plants per plot. The highest correlation estimates were found between the number of plants before harvest and the number of ears, jointly with the grain yield and the number of ears. Lower correlation estimates were found between the length of the ears and the number of ears as well as the grain yield and the length of the ears. The research confirms that the best varieties to be grown are: Clarica, NK Cooler, Drim and PR 39K13. The Bayesian approach proved to be useful in selection studies, which can further be used to improve the studied genotypes.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 50 条
  • [1] Population parameters and selection of kale genotypes using Bayesian inference in a multi-trait linear model
    Azevedo, Alcinei Mistico
    de Andrade Junior, Valter Carvalho
    dos Santos, Albertir Aparecido
    de Sousa Junior, Aderbal Soares
    Mendes Oliveira, Altino Junior
    Miranda Ferreira, Marcos Aurelio
    [J]. ACTA SCIENTIARUM-AGRONOMY, 2017, 39 (01): : 25 - 31
  • [2] Genetic parameters and multi-trait selection of white oats for forage
    da Rosa, T. C.
    Carvalho, I. R.
    da Silva, J. A. G.
    Szareski, V. J.
    Segatto, T. A.
    Port, E. D.
    Loro, M., V
    Almeida, H. C. F.
    de Oliveira, A. C.
    da Maia, L. C.
    de Souza, V. Q.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2021, 20 (03):
  • [3] Multi-trait selection for mean performance and stability in maize
    Olivoto, Tiago
    Nardino, Maicon
    Meira, Daniela
    Meier, Carine
    Follmann, Diego N.
    de Souza, Velci Q.
    Konflanz, Valmor A.
    Baretta, Diego
    [J]. AGRONOMY JOURNAL, 2021, 113 (05) : 3968 - 3974
  • [4] Estimation of genetic parameters for growth traits in Tabapua cattle using a multi-trait model
    de Oliveira Menezes, Gilberto Romeiro
    Torres, Robledo de Almeida
    de Almeida Torres Junior, Roberto Augusto
    Campos da Silva, Luiz Otavio
    Gondo, Andrea
    Euclydes, Ricardo Frederico
    [J]. REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2013, 42 (08): : 570 - 574
  • [5] Genetic analysis of morphological and functional traits in Campolina horses using Bayesian multi-trait model
    Bussiman, Fernando de Oliveira
    Perez, Bruno da Costa
    Ventura, Ricardo Vieira
    Fonseca e Silva, Fabyano
    Campolina Diniz Peixoto, Maria Gabriela
    Vizona, Rafael Guimaraes
    Mattos, Elisangela Chicaroni
    Sterman Ferraz, Jose Bento
    Eler, Joanir Pereira
    Curi, Rogerio Abdallah
    de Carvalho Balieiro, Julio Cesar
    [J]. LIVESTOCK SCIENCE, 2018, 216 : 119 - 129
  • [6] A Genomic Bayesian Multi-trait and Multi-environment Model
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    Toledo, Fernando H.
    Perez-Hernandez, Oscar
    Eskridge, Kent M.
    Rutkoski, Jessica
    [J]. G3-GENES GENOMES GENETICS, 2016, 6 (09): : 2725 - 2744
  • [7] MULTI-TRAIT SELECTION FOR GENETIC IMPROVEMENT IN INDIAN BUFFALOES
    Kumar, Sunil
    Yadav, M. C.
    Prasad, R. B.
    [J]. BUFFALO BULLETIN, 2008, 27 (01): : 154 - 160
  • [8] MULTI-TRAIT SELECTION USING RELATIVES RECORDS
    HENDERSON, CR
    QUAAS, RL
    [J]. JOURNAL OF ANIMAL SCIENCE, 1976, 43 (01) : 218 - 218
  • [9] Multi-trait animal model estimation of genetic parameters for linear type and gait traits in the Belgian warmblood horse
    Rustin, M.
    Janssens, S.
    Buys, N.
    Gengler, N.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2009, 126 (05) : 378 - 386
  • [10] Genetic parameters of pre-weaning weights in crossbred piglets using multi-trait animal model
    Sheikh Firdous Ahmad
    Gyanendra Kumar Gaur
    Nihar Ranjan Sahoo
    P. K. Bharti
    Binoy Chandra Naha
    [J]. Tropical Animal Health and Production, 2020, 52 : 109 - 114