Updating knowledge in estimating the genetics parameters: Multi-trait and Multi-Environment Bayesian analysis in rice

被引:0
|
作者
Azevedo, Camila Ferreira [1 ]
Valiati Barreto, Cynthia Aparecida [2 ]
Suela, Matheus Massariol [2 ]
Nascimento, Moyses [1 ]
da Silva Junior, Antonio Carlos [2 ]
Campana Nascimento, Ana Carolina [1 ]
Cruz, Cosme Damiao [2 ]
Soraes, Plinio Cesar [3 ]
机构
[1] Univ Fed Vicosa, Dept Estat, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Dept Biol Geral, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[3] Empresa Pesquisa Agropecuaria Minas Gerais, Ave Jose Candido da Silveira 1647, BR-31170495 Belo Horizonte, MG, Brazil
来源
SCIENTIA AGRICOLA | 2023年 / 80卷
关键词
MCMC; genetic correlation; genetic improvement; heritability; prior distribution; MIXED MODELS;
D O I
10.1590/1678-992X-2022-0056
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Among the multi-trait models selected to study several traits and environments jointly, the Bayesian framework has been a preferred tool when constructing a more complex and biologically realistic model. In most cases, non-informative prior distributions are adopted in studies using the Bayesian approach. However, the Bayesian approach presents more accurate estimates when informative prior distributions are used. The present study was developed to evaluate the efficiency and applicability of multi-trait multi-environment (MTME) models within a Bayesian framework utilizing a strategy for eliciting informative prior distribution using previous data on rice. The study involved data pertaining to rice (Oryza sativa L.) genotypes in three environments and five crop seasons (2010/2011 until 2014/2015) for the following traits: grain yield (GY), flowering in days (FLOR) and plant height (PH). Variance components, genetic and non-genetic parameters were estimated using the Bayesian method. In general, the informative prior distribution in Bayesian MTME models provided higher estimates of individual narrow-sense heritability and variance components, as well as minor lengths for the highest probability density interval (HPD), compared to their respective non-informative prior distribution analyses. More informative prior distributions make it possible to detect genetic correlations between traits, which cannot be achieved with non-informative prior distributions. Therefore, this mechanism presented to update knowledge for an elicitation of an informative prior distribution can be efficiently applied in rice breeding programs.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Rice grain quality: an Australian multi-environment study
    Ward, Rachelle
    Spohr, Lorraine
    Snell, Peter
    CROP & PASTURE SCIENCE, 2019, 70 (11): : 946 - 957
  • [42] Multi-trait GWAS for diverse ancestries: mapping the knowledge gap
    Troubat, Lucie
    Fettahoglu, Deniz
    Henches, Leo
    Aschard, Hugues
    Julienne, Hanna
    BMC GENOMICS, 2024, 25 (01)
  • [43] Application of multi-trait Bayesian decision theory for parental genomic selection
    de Jesus Villar-Hernandez, Bartolo
    Perez-Elizalde, Sergio
    Martini, Johannes W. R.
    Toledo, Fernando
    Perez-Rodriguez, P.
    Krause, Margaret
    Delia Garcia-Calvillo, Irma
    Covarrubias-Pazaran, Giovanny
    Crossa, Jose
    G3-GENES GENOMES GENETICS, 2021, 11 (02):
  • [44] Genetic parameters and multi-trait selection of white oats for forage
    da Rosa, T. C.
    Carvalho, I. R.
    da Silva, J. A. G.
    Szareski, V. J.
    Segatto, T. A.
    Port, E. D.
    Loro, M., V
    Almeida, H. C. F.
    de Oliveira, A. C.
    da Maia, L. C.
    de Souza, V. Q.
    GENETICS AND MOLECULAR RESEARCH, 2021, 20 (03):
  • [45] The analysis of quantitative trait loci in multi-environment trials using a multiplicative mixed model
    Verbyla, AP
    Eckermann, PJ
    Thompson, R
    Cullis, BR
    AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 2003, 54 (11-12): : 1395 - 1408
  • [46] Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications
    Rosalie B. T. M. Sterenborg
    Inga Steinbrenner
    Yong Li
    Melissa N. Bujnis
    Tatsuhiko Naito
    Eirini Marouli
    Tessel E. Galesloot
    Oladapo Babajide
    Laura Andreasen
    Arne Astrup
    Bjørn Olav Åsvold
    Stefania Bandinelli
    Marian Beekman
    John P. Beilby
    Jette Bork-Jensen
    Thibaud Boutin
    Jennifer A. Brody
    Suzanne J. Brown
    Ben Brumpton
    Purdey J. Campbell
    Anne R. Cappola
    Graziano Ceresini
    Layal Chaker
    Daniel I. Chasman
    Maria Pina Concas
    Rodrigo Coutinho de Almeida
    Simone M. Cross
    Francesco Cucca
    Ian J. Deary
    Alisa Devedzic Kjaergaard
    Justin B. Echouffo Tcheugui
    Christina Ellervik
    Johan G. Eriksson
    Luigi Ferrucci
    Jan Freudenberg
    Christian Fuchsberger
    Christian Gieger
    Franco Giulianini
    Martin Gögele
    Sarah E. Graham
    Niels Grarup
    Ivana Gunjača
    Torben Hansen
    Barbara N. Harding
    Sarah E. Harris
    Stig Haunsø
    Caroline Hayward
    Jennie Hui
    Till Ittermann
    J. Wouter Jukema
    Nature Communications, 15
  • [47] Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications
    Sterenborg, Rosalie B. T. M.
    Steinbrenner, Inga
    Li, Yong
    Bujnis, Melissa N.
    Naito, Tatsuhiko
    Marouli, Eirini
    Galesloot, Tessel E.
    Babajide, Oladapo
    Andreasen, Laura
    Astrup, Arne
    Asvold, Bjorn Olav
    Bandinelli, Stefania
    Beekman, Marian
    Beilby, John P.
    Bork-Jensen, Jette
    Boutin, Thibaud
    Brody, Jennifer A.
    Brown, Suzanne J.
    Brumpton, Ben
    Campbell, Purdey J.
    Cappola, Anne R.
    Ceresini, Graziano
    Chaker, Layal
    Chasman, Daniel, I
    Concas, Maria Pina
    de Almeida, Rodrigo Coutinho
    Cross, Simone M.
    Cucca, Francesco
    Deary, Ian J.
    Kjaergaard, Alisa Devedzic
    Tcheugui, Justin B. Echouffo
    Ellervik, Christina
    Eriksson, Johan G.
    Ferrucci, Luigi
    Freudenberg, Jan
    Fuchsberger, Christian
    Gieger, Christian
    Giulianini, Franco
    Gogele, Martin
    Graham, Sarah E.
    Grarup, Niels
    Gunjaca, Ivana
    Hansen, Torben
    Harding, Barbara N.
    Harris, Sarah E.
    Haunso, Stig
    Hayward, Caroline
    Hui, Jennie
    Ittermann, Till
    Jukema, J. Wouter
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [48] Knowledge Sharing in Proactive WoT Multi-environment Models
    Rentero-Trejo, Ruben
    Galan-Jimenez, Jaime
    Garcia-Alonso, Jose
    Berrocal, Javier
    Murillo, Juan Manuel
    FRONTIERS OF COMPUTER VISION, IW-FCV 2024, 2024, 2143 : 46 - 57
  • [49] Multi-trait Bayesian analysis and genetic parameter estimates in production characters of Mecheri sheep of India
    Kannan, Thiruvenkadan Aranganoor
    Jaganathan, Muralidharan
    Ramanujam, Rajendran
    Chinnaondi, Bandeswaran
    Illa, Satish Kumar
    Kizilkaya, Kadir
    Peters, Sunday O.
    TROPICAL ANIMAL HEALTH AND PRODUCTION, 2023, 55 (01)
  • [50] Multi-trait Bayesian analysis and genetic parameter estimates in production characters of Mecheri sheep of India
    Thiruvenkadan Aranganoor Kannan
    Muralidharan Jaganathan
    Rajendran Ramanujam
    Bandeswaran Chinnaondi
    Satish Kumar Illa
    Kadir Kizilkaya
    Sunday O. Peters
    Tropical Animal Health and Production, 2023, 55