Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize

被引:0
|
作者
Raysa Gevartosky
Humberto Fanelli Carvalho
Germano Costa-Neto
Osval A. Montesinos-López
José Crossa
Roberto Fritsche-Neto
机构
[1] University of São Paulo,Department of Genetics, Luiz de Queiroz College of Agriculture
[2] Universidad Politécnica de Madrid (UPM),Centro de Biotecnología y Genómica de Plantas (CBGP, UPM
[3] Cornell University,INIA)
[4] Universidad de Colima,Institute for Genomics Diversity
[5] International Maize and Wheat Improvement Center (CIMMYT),Facultad de Telemática
[6] Colegio de Postgraduados,undefined
来源
关键词
Genomic prediction; Training population; Enviromics; Response to selection;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 43 条
  • [1] Enviromic-based kernels may optimize resource allocation with multi-trait multi-environment genomic prediction for tropical Maize
    Gevartosky, Raysa
    Carvalho, Humberto Fanelli
    Costa-Neto, Germano
    Montesinos-Lopez, Osval A.
    Crossa, Jose
    Fritsche-Neto, Roberto
    [J]. BMC PLANT BIOLOGY, 2023, 23 (01)
  • [2] Multi-trait and multi-environment genomic prediction for flowering traits in maize: a deep learning approach
    Mora-Poblete, Freddy
    Maldonado, Carlos
    Henrique, Luma
    Uhdre, Renan
    Scapim, Carlos Alberto
    Mangolim, Claudete Aparecida
    [J]. FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [3] A Genomic Bayesian Multi-trait and Multi-environment Model
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    Toledo, Fernando H.
    Perez-Hernandez, Oscar
    Eskridge, Kent M.
    Rutkoski, Jessica
    [J]. G3-GENES GENOMES GENETICS, 2016, 6 (09): : 2725 - 2744
  • [4] Multi-trait multi-environment diallel analyses for maize breeding
    Coelho, Igor Ferreira
    Alves, Rodrigo Silva
    Rocha, Joao Romero do Amaral Santos de Carvalho
    Peixoto, Marco Antonio
    Teodoro, Larissa Pereira Ribeiro
    Teodoro, Paulo Eduardo
    Pinto, Jefferson Fernando Naves
    dos Reis, Edesio Fialho
    Bhering, Leonardo Lopes
    [J]. EUPHYTICA, 2020, 216 (09)
  • [5] Multi-trait multi-environment diallel analyses for maize breeding
    Igor Ferreira Coelho
    Rodrigo Silva Alves
    João Romero do Amaral Santos de Carvalho Rocha
    Marco Antônio Peixoto
    Larissa Pereira Ribeiro Teodoro
    Paulo Eduardo Teodoro
    Jefferson Fernando Naves Pinto
    Edésio Fialho dos Reis
    Leonardo Lopes Bhering
    [J]. Euphytica, 2020, 216
  • [6] Multi-trait multi-environment genomic prediction of preliminary yield trial in pulse crop
    Saludares, Rica Amor
    Atanda, Sikiru Adeniyi
    Piche, Lisa
    Worral, Hannah
    Dariva, Francoise
    McPhee, Kevin
    Bandillo, Nonoy
    [J]. PLANT GENOME, 2024,
  • [7] An R Package for Bayesian Analysis of Multi-environment and Multi-trait Multi-environment Data for Genome-Based Prediction
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Javier Luna-Vazquez, Francisco
    Toledo, Fernando H.
    Perez-Rodriguez, Paulino
    Lillemo, Morten
    Crossa, Jose
    [J]. G3-GENES GENOMES GENETICS, 2019, 9 (05): : 1355 - 1369
  • [8] Modeling the impact of resource allocation decisions on genomic prediction using maize multi-environment data
    Schoemaker, Dylan L.
    Lima, Dayane Cristina
    de Leon, Natalia
    Kaeppler, Shawn M.
    [J]. CROP SCIENCE, 2024, 64 (05) : 2748 - 2767
  • [9] Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids
    Danilo Hottis Lyra
    Leandro de Freitas Mendonça
    Giovanni Galli
    Filipe Couto Alves
    Ítalo Stefanine Correia Granato
    Roberto Fritsche-Neto
    [J]. Molecular Breeding, 2017, 37
  • [10] Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids
    Lyra, Danilo Hottis
    Mendonca, Leandro de Freitas
    Galli, Giovanni
    Alves, Filipe Couto
    Correia Granato, Italo Stefanine
    Fritsche-Neto, Roberto
    [J]. MOLECULAR BREEDING, 2017, 37 (06)