A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5

被引:2
|
作者
Yang, Jie [1 ]
Sun, Ting [1 ]
Zhu, Wenchao [1 ]
Li, Zonghao [2 ]
机构
[1] SouthWest Forestry Univ, Sch Machinery & Transportat, Kunming 650224, Peoples R China
[2] China Beijing Jinzhi Tianzheng Intelligent Control, Beijing 100004, Peoples R China
关键词
Traffic sign detection; deep learning; attention mechanism; lightweight; NETWORK;
D O I
10.1109/ACCESS.2023.3326000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign recognition and detection is a key technology in automatic vehicle driving and driver assistance systems. However, existing traffic sign recognition algorithms suffer from problems such as large model size, complex computation, high computational cost, which make it difficult to achieve an effective balance between detection speed and detection accuracy. This paper proposed an improved lightweight recognition algorithm, which is based on YOLOv5. This algorithm replaces the convolutional structure in the original YOLOv5 neck network with Ghost Module and C3Ghost Module, thereby reducing redundant features in the feature fusion process, lowering computational cost and the number of parameters. The structure of the PAN network was improved and the hybrid attention mechanism module CBAM was introduced to capture key information in traffic signs. Cross-layer connections were added to shorten the path of information transfer in feature pyramid network, which fused more features and improved the network feature recognition accuracy. In addition, the EIoU_Loss function was adopted as the bounding box regression loss function to improve the localization accuracy of the algorithm. The performance of the improved algorithm was also verified on the Chinese traffic sign dataset. Experimental results showed that the improved algorithm's detection accuracy was enhanced by 1.2%, while mAP@0.5 and mAP@0.5:0.95 were enhanced by 1.5% and 3.4% respectively over the existing YOLOv5 algorithm, and the overall parameter numbers and computational cost of the model were reduced by 14.5% and 16%. The proposed algorithm performs better than the current mainstream detection algorithms, has higher recognition accuracy in multiple environments, and meets the demand for real-time traffic sign recognition.
引用
下载
收藏
页码:115998 / 116010
页数:13
相关论文
共 50 条
  • [41] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Yuan, Xinpeng
    Fu, Zhibo
    Zhang, Bowen
    Xie, Zhengkun
    Gan, Rui
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [42] Citrus Detection Method Based on Improved YOLOv5 Lightweight Network
    Gao, Xinyang
    Wei, Sheng
    Wen, Zhiqing
    Yu, Tianbiao
    Computer Engineering and Applications, 2023, 59 (11) : 212 - 221
  • [43] Research on lightweight algorithm for gangue detection based on improved Yolov5
    Xinpeng Yuan
    Zhibo Fu
    Bowen Zhang
    Zhengkun Xie
    Rui Gan
    Scientific Reports, 14
  • [44] A lightweight waxberry fruit detection model based on YOLOv5
    Yang, Chengyu
    Liu, Jun
    He, Jianting
    IET IMAGE PROCESSING, 2024, 18 (07) : 1796 - 1808
  • [45] A lightweight vehicles detection network model based on YOLOv5
    Dong, Xudong
    Yan, Shuai
    Duan, Chaoqun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
  • [46] A Lightweight Model Based on YOLOv5 for Helmet Wearing Detection
    Zou, Xiongxin
    Chen, Zuguo
    Zhou, Yimin
    4TH INTERNATIONAL CONFERENCE ON INFORMATICS ENGINEERING AND INFORMATION SCIENCE (ICIEIS2021), 2022, 12161
  • [47] A lightweight network face detection based on YOLOv5 Lightweight model face detection based on YOLOv5 combined with Mobilenetv2
    Xu, Bowen
    Wang, Chunmei
    Yu, Baocheng
    Xu, Wenxia
    Du, Bing
    2023 THE 6TH INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA 2023, 2023, : 157 - 162
  • [48] A lightweight bus passenger detection model based on YOLOv5
    Li, Xiaosong
    Wu, Yanxia
    Fu, Yan
    Zhang, Lidan
    Hong, Ruize
    IET IMAGE PROCESSING, 2023, 17 (14) : 3927 - 3937
  • [49] A Lightweight Method for Detecting Sewer Defects Based on Improved YOLOv5
    Zhang, Xing
    Zhang, Jiawei
    Tian, Lei
    Liu, Xiang
    Wang, Shuohong
    APPLIED SCIENCES-BASEL, 2023, 13 (15):
  • [50] A Lightweight Military Target Detection Algorithm Based on Improved YOLOv5
    Du, Xiuli
    Song, Linkai
    Lv, Yana
    Qiu, Shaoming
    ELECTRONICS, 2022, 11 (20)