A lightweight vehicles detection network model based on YOLOv5

被引:139
|
作者
Dong, Xudong [1 ]
Yan, Shuai [2 ]
Duan, Chaoqun [1 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Vehicle detection; Deep learning; Attention mechanism; GhostBottleneck; Loss function;
D O I
10.1016/j.engappai.2022.104914
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicle detection technology is of great significance for realizing automatic monitoring and AI-assisted driving systems. The state-of-the-art object detection method, namely, a class of YOLOv5, has often been used to detect vehicles. However, it suffers some challenges, such as a high computational load and undesirable detection rate. To address these issues, an improved lightweight YOLOv5 method is proposed for vehicle detection in this paper. In the presented method, C3Ghost and Ghost modules are introduced into the YOLOv5 neck network to reduce the floating-point operations (FLOPs) in the feature channel fusion process and enhance the feature expression performance. A convolutional block attention module (CBAM) is introduced to the YOLOv5 backbone network to select the information critical to the vehicle detection task and suppress uncritical information, thus improving the detection accuracy of the algorithm. Furthermore, CIoU_Loss is considered the bounding box regression loss function to accelerate the bounding box regression rate and improve the localization accuracy of the algorithm. To verify the performance of the proposed approach, we tested our model via two case studies, i.e., the PASCAL VOC dataset and MS COCO dataset. The results show that the detection precision of the proposed model increased 3.2%, the FLOPs decreased 15.24%, and the number of model parameters decreased 19.37% compared with those of the existing YOLOv5. Through case studies and comparisons, the effectiveness and superiority of the presented approach are demonstrated.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A lightweight network face detection based on YOLOv5 Lightweight model face detection based on YOLOv5 combined with Mobilenetv2
    Xu, Bowen
    Wang, Chunmei
    Yu, Baocheng
    Xu, Wenxia
    Du, Bing
    [J]. 2023 THE 6TH INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA 2023, 2023, : 157 - 162
  • [2] Lightweight Road Damage Detection Network Based on YOLOv5
    Zhao, Jingwei
    Tao, Ye
    Zhang, Zhixian
    Huang, Chao
    Cui, Wenhua
    [J]. ENGINEERING LETTERS, 2024, 32 (08) : 1708 - 1720
  • [3] Fast ship detection based on lightweight YOLOv5 network
    Zheng, Jia-Chun
    Sun, Shi-Dan
    Zhao, Shi-Jia
    [J]. IET IMAGE PROCESSING, 2022, 16 (06) : 1585 - 1593
  • [4] A lightweight waxberry fruit detection model based on YOLOv5
    Yang, Chengyu
    Liu, Jun
    He, Jianting
    [J]. IET IMAGE PROCESSING, 2024, 18 (07) : 1796 - 1808
  • [5] A Lightweight Model Based on YOLOv5 for Helmet Wearing Detection
    Zou, Xiongxin
    Chen, Zuguo
    Zhou, Yimin
    [J]. 4TH INTERNATIONAL CONFERENCE ON INFORMATICS ENGINEERING AND INFORMATION SCIENCE (ICIEIS2021), 2022, 12161
  • [6] A lightweight tea bud detection model based on Yolov5
    Gui, Zhiyong
    Chen, Jianneng
    Li, Yang
    Chen, Zhiwei
    Wu, Chuanyu
    Dong, Chunwang
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 205
  • [7] A lightweight bus passenger detection model based on YOLOv5
    Li, Xiaosong
    Wu, Yanxia
    Fu, Yan
    Zhang, Lidan
    Hong, Ruize
    [J]. IET IMAGE PROCESSING, 2023, 17 (14) : 3927 - 3937
  • [8] Lightweight object detection algorithm based on YOLOv5 for unmanned surface vehicles
    Zhang, Jialin
    Jin, Jiucai
    Ma, Yi
    Ren, Peng
    [J]. FRONTIERS IN MARINE SCIENCE, 2023, 9
  • [9] Lightweight network for insulator fault detection based on improved YOLOv5
    Weng, Dehua
    Zhu, Zhiliang
    Yan, Zhengbing
    Wu, Moran
    Jiang, Ziang
    Ye, Nan
    [J]. CONNECTION SCIENCE, 2024, 36 (01)
  • [10] Vehicle detection in surveillance videos based on YOLOv5 lightweight network
    Wang, Yurui
    Yang, Guoping
    Guo, Jingbo
    [J]. BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2022, 70 (06)