A lightweight waxberry fruit detection model based on YOLOv5

被引:2
|
作者
Yang, Chengyu [1 ]
Liu, Jun [1 ]
He, Jianting [2 ]
机构
[1] Shanghai Dianji Univ, Sch Elect Engn, Shanghai, Peoples R China
[2] Cixi Shanglin Lake Waxberry Plantat, Cixi, Zhejiang, Peoples R China
关键词
agricultural engineering; agricultural products; complex networks; computer vision; feature extraction; image recognition;
D O I
10.1049/ipr2.13064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to solve the safety and efficiency problems in the picking process of Waxberry, the slow speed and low precision of high-density Waxberry target detection under a complex background were studied. A lightweight Waxberry target detection algorithm based on YOLOv5 is studied. In this study, C3-Faster1 and C3-Faster2 modules are proposed, which are located in the backbone and neck of the network: C3-Faster1 can improve the model speed with a simple structure; C3-Faster2 integrates the context attention mechanism and transform module based on C3-Faster1 to make the network pay attention to the information of Waxberry image context and expand the channel receptive field. A new pyramid module, SPPFCSPC, is proposed to expand the sensing field and improve the accuracy of boundary detection. It also combines the Coordinate Attention (CA) and Dyhead dynamic detection head to suppress useless information and enhance the detection ability of small targets. Compared to YOLOv4, YOLOv7, and YOLOv8, mean accuracy percentage (mAP) improved by 5.7%, 9.4%, 8.3%. Compared to the base YOLOv5 model, mAP has improved from 86.5% to 91.9%, running on 2 GB Jeston nano, and the improved model is 5.03 frames per second (FPS) faster than YOLOv5. Experiments show that the designed module is more effective in Waxberry detection tasks. Waxberry is a berry plant, a type of agricultural by-product, whose harvesting problems have been affected. We improve the target detection model and innovate a new convolutional module to achieve an average accuracy of 91.6%, and the network speed we tested in Jeston nano reaches 11.86 FPS, which is in line with the development of subsequent picking robots. image
引用
收藏
页码:1796 / 1808
页数:13
相关论文
共 50 条
  • [1] A lightweight network face detection based on YOLOv5 Lightweight model face detection based on YOLOv5 combined with Mobilenetv2
    Xu, Bowen
    Wang, Chunmei
    Yu, Baocheng
    Xu, Wenxia
    Du, Bing
    2023 THE 6TH INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA 2023, 2023, : 157 - 162
  • [2] A lightweight tea bud detection model based on Yolov5
    Gui, Zhiyong
    Chen, Jianneng
    Li, Yang
    Chen, Zhiwei
    Wu, Chuanyu
    Dong, Chunwang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 205
  • [3] A lightweight vehicles detection network model based on YOLOv5
    Dong, Xudong
    Yan, Shuai
    Duan, Chaoqun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
  • [4] A Lightweight Model Based on YOLOv5 for Helmet Wearing Detection
    Zou, Xiongxin
    Chen, Zuguo
    Zhou, Yimin
    4TH INTERNATIONAL CONFERENCE ON INFORMATICS ENGINEERING AND INFORMATION SCIENCE (ICIEIS2021), 2022, 12161
  • [5] A lightweight bus passenger detection model based on YOLOv5
    Li, Xiaosong
    Wu, Yanxia
    Fu, Yan
    Zhang, Lidan
    Hong, Ruize
    IET IMAGE PROCESSING, 2023, 17 (14) : 3927 - 3937
  • [6] UAV forest fire detection based on lightweight YOLOv5 model
    Zhou, Mengdong
    Wu, Lei
    Liu, Shuai
    Li, Jianjun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (22) : 61777 - 61788
  • [7] Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
    Sun, Yu
    Zhang, Dongwei
    Guo, Xindong
    Yang, Hua
    PLANTS-BASEL, 2023, 12 (17):
  • [8] A Lightweight Detection Method for Blueberry Fruit Maturity Based on an Improved YOLOv5 Algorithm
    Xiao, Feng
    Wang, Haibin
    Xu, Yueqin
    Shi, Zhen
    AGRICULTURE-BASEL, 2024, 14 (01):
  • [9] A fast and lightweight detection algorithm for passion fruit pests based on improved YOLOv5
    Li, Kangshun
    Wang, Jiancong
    Jalil, Hassan
    Wang, Hui
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 204
  • [10] Lightweight safflower cluster detection based on YOLOv5
    Guo, Hui
    Wu, Tianlun
    Gao, Guomin
    Qiu, Zhaoxin
    Chen, Haiyang
    SCIENTIFIC REPORTS, 2024, 14 (01):