A lightweight waxberry fruit detection model based on YOLOv5

被引:2
|
作者
Yang, Chengyu [1 ]
Liu, Jun [1 ]
He, Jianting [2 ]
机构
[1] Shanghai Dianji Univ, Sch Elect Engn, Shanghai, Peoples R China
[2] Cixi Shanglin Lake Waxberry Plantat, Cixi, Zhejiang, Peoples R China
关键词
agricultural engineering; agricultural products; complex networks; computer vision; feature extraction; image recognition;
D O I
10.1049/ipr2.13064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to solve the safety and efficiency problems in the picking process of Waxberry, the slow speed and low precision of high-density Waxberry target detection under a complex background were studied. A lightweight Waxberry target detection algorithm based on YOLOv5 is studied. In this study, C3-Faster1 and C3-Faster2 modules are proposed, which are located in the backbone and neck of the network: C3-Faster1 can improve the model speed with a simple structure; C3-Faster2 integrates the context attention mechanism and transform module based on C3-Faster1 to make the network pay attention to the information of Waxberry image context and expand the channel receptive field. A new pyramid module, SPPFCSPC, is proposed to expand the sensing field and improve the accuracy of boundary detection. It also combines the Coordinate Attention (CA) and Dyhead dynamic detection head to suppress useless information and enhance the detection ability of small targets. Compared to YOLOv4, YOLOv7, and YOLOv8, mean accuracy percentage (mAP) improved by 5.7%, 9.4%, 8.3%. Compared to the base YOLOv5 model, mAP has improved from 86.5% to 91.9%, running on 2 GB Jeston nano, and the improved model is 5.03 frames per second (FPS) faster than YOLOv5. Experiments show that the designed module is more effective in Waxberry detection tasks. Waxberry is a berry plant, a type of agricultural by-product, whose harvesting problems have been affected. We improve the target detection model and innovate a new convolutional module to achieve an average accuracy of 91.6%, and the network speed we tested in Jeston nano reaches 11.86 FPS, which is in line with the development of subsequent picking robots. image
引用
收藏
页码:1796 / 1808
页数:13
相关论文
共 50 条
  • [21] Improved lightweight road damage detection based on YOLOv5
    LIU Chang
    SUN Yu
    CHEN Jin
    YANG Jing
    WANG Fengchao
    Optoelectronics Letters, 2025, 21 (05) : 314 - 320
  • [22] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38
  • [23] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816
  • [24] Lightweight Research of YOLOv5 Target Detection
    He, Yu
    Tian, Junwei
    Zhang, Zhen
    Wang, Qin
    Zhao, Peng
    Computer Engineering and Applications, 2023, 59 (01) : 92 - 99
  • [25] Plant Disease Detection and Classification Method Based on the Optimized Lightweight YOLOv5 Model
    Wang, Haiqing
    Shang, Shuqi
    Wang, Dongwei
    He, Xiaoning
    Feng, Kai
    Zhu, Hao
    AGRICULTURE-BASEL, 2022, 12 (07):
  • [26] An Improved Lightweight YOLOv5 Model Based on Attention Mechanism for Face Mask Detection
    Xu, Sheng
    Guo, Zhanyu
    Liu, Yuchi
    Fan, Jingwei
    Liu, Xuxu
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT III, 2022, 13531 : 531 - 543
  • [27] Lightweight Foggy Weather Object Detection Method Based on YOLOv5
    Lai, Jing'an
    Chen, Ziqiang
    Sun, Zongwei
    Pei, Qingqi
    Computer Engineering and Applications, 2024, 60 (06) : 78 - 88
  • [28] Lightweight network for insulator fault detection based on improved YOLOv5
    Weng, Dehua
    Zhu, Zhiliang
    Yan, Zhengbing
    Wu, Moran
    Jiang, Ziang
    Ye, Nan
    CONNECTION SCIENCE, 2024, 36 (01)
  • [29] Fast Helmet and License Plate Detection Based on Lightweight YOLOv5
    Wei, Chenyang
    Tan, Zhao
    Qing, Qixiang
    Zeng, Rong
    Wen, Guilin
    SENSORS, 2023, 23 (09)
  • [30] Strip steel surface defect detection based on lightweight YOLOv5
    Zhang, Yongping
    Shen, Sijie
    Xu, Sen
    FRONTIERS IN NEUROROBOTICS, 2023, 17