A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5

被引:2
|
作者
Yang, Jie [1 ]
Sun, Ting [1 ]
Zhu, Wenchao [1 ]
Li, Zonghao [2 ]
机构
[1] SouthWest Forestry Univ, Sch Machinery & Transportat, Kunming 650224, Peoples R China
[2] China Beijing Jinzhi Tianzheng Intelligent Control, Beijing 100004, Peoples R China
关键词
Traffic sign detection; deep learning; attention mechanism; lightweight; NETWORK;
D O I
10.1109/ACCESS.2023.3326000
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign recognition and detection is a key technology in automatic vehicle driving and driver assistance systems. However, existing traffic sign recognition algorithms suffer from problems such as large model size, complex computation, high computational cost, which make it difficult to achieve an effective balance between detection speed and detection accuracy. This paper proposed an improved lightweight recognition algorithm, which is based on YOLOv5. This algorithm replaces the convolutional structure in the original YOLOv5 neck network with Ghost Module and C3Ghost Module, thereby reducing redundant features in the feature fusion process, lowering computational cost and the number of parameters. The structure of the PAN network was improved and the hybrid attention mechanism module CBAM was introduced to capture key information in traffic signs. Cross-layer connections were added to shorten the path of information transfer in feature pyramid network, which fused more features and improved the network feature recognition accuracy. In addition, the EIoU_Loss function was adopted as the bounding box regression loss function to improve the localization accuracy of the algorithm. The performance of the improved algorithm was also verified on the Chinese traffic sign dataset. Experimental results showed that the improved algorithm's detection accuracy was enhanced by 1.2%, while mAP@0.5 and mAP@0.5:0.95 were enhanced by 1.5% and 3.4% respectively over the existing YOLOv5 algorithm, and the overall parameter numbers and computational cost of the model were reduced by 14.5% and 16%. The proposed algorithm performs better than the current mainstream detection algorithms, has higher recognition accuracy in multiple environments, and meets the demand for real-time traffic sign recognition.
引用
下载
收藏
页码:115998 / 116010
页数:13
相关论文
共 50 条
  • [21] Lightweight Sea Cucumber Recognition Network Using Improved YOLOv5
    Xiao, Qian
    Li, Qian
    Zhao, Lide
    IEEE ACCESS, 2023, 11 : 44787 - 44797
  • [22] Tomato Maturity Recognition Model Based on Improved YOLOv5 in Greenhouse
    Li, Renzhi
    Ji, Zijing
    Hu, Shikang
    Huang, Xiaodong
    Yang, Jiali
    Li, Wenfeng
    AGRONOMY-BASEL, 2023, 13 (02):
  • [23] Lightweight highland barley detection based on improved YOLOv5
    Minghui Cai
    Hui Deng
    Jianwei Cai
    Weipeng Guo
    Zhipeng Hu
    Dongzheng Yu
    Houxi Zhang
    Plant Methods, 21 (1)
  • [24] Improved lightweight road damage detection based on YOLOv5
    Chang Liu
    Yu Sun
    Jin Chen
    Jing Yang
    Fengchao Wang
    Optoelectronics Letters, 2025, 21 (5) : 314 - 320
  • [25] Lightweight Tunnel Obstacle Detection Based on Improved YOLOv5
    Li, Yingjie
    Ma, Chuanyi
    Li, Liping
    Wang, Rui
    Liu, Zhihui
    Sun, Zizheng
    SENSORS, 2024, 24 (02)
  • [26] Lightweight UAV Detection Algorithm Based on Improved YOLOv5
    Peng Y.
    Tu X.
    Yang Q.
    Li R.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (12): : 28 - 38
  • [27] Improved lightweight road damage detection based on YOLOv5
    LIU Chang
    SUN Yu
    CHEN Jin
    YANG Jing
    WANG Fengchao
    Optoelectronics Letters, 2025, 21 (05) : 314 - 320
  • [28] Lightweight Fire Detection Algorithm Based on Improved YOLOv5
    Zhang, Dawei
    Chen, Yutang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 809 - 816
  • [29] A Lightweight Deep Learning Model for Real-time Detection and Recognition of Traffic Signs Images Based on YOLOv5
    He, Hui
    Chen, Qihong
    Xie, Guoping
    Yang, Boxiong
    Li, Shelei
    Zhou, Bo
    Gu, Yuye
    2022 INTERNATIONAL CONFERENCE ON CYBER-ENABLED DISTRIBUTED COMPUTING AND KNOWLEDGE DISCOVERY, CYBERC, 2022, : 206 - 212
  • [30] Strawberry Maturity Recognition Based on Improved YOLOv5
    Tao, Zhiqing
    Li, Ke
    Rao, Yuan
    Li, Wei
    Zhu, Jun
    AGRONOMY-BASEL, 2024, 14 (03):