The Trajectory Interval Forest Classifier for Trajectory Classification

被引:1
|
作者
Landi, Cristiano [1 ]
Guidotti, Riccardo [1 ]
Monreale, Anna [1 ]
Nanni, Mirco [2 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] CNR, ISTI, Pisa, Italy
关键词
GPS Trajectory Classification; Mobility Data Analysis;
D O I
10.1145/3589132.3625617
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
GPS devices generate spatio-temporal trajectories for different types of moving objects. Scientists can exploit them to analyze migration patterns, manage city traffic, monitor the spread of diseases, etc. Many current state-of-the-art models that use this data type require a not negligible running time to be trained. To overcome this issue, we propose the Trajectory Interval Forest (TIF) classifier, an efficient model with high throughput. TIF works by calculating various mobility-related statistics over a set of randomly selected intervals. These statistics are used to create a tabular representation of the data, which can be used as input for any classical classifier. Our results show that TIF is comparable to or better than state-of-art in terms of accuracy and is orders of magnitude faster.
引用
收藏
页码:378 / 381
页数:4
相关论文
共 50 条
  • [31] Utilize trajectory information for small target classification
    Alkentar, Saad
    Assalem, Abdulkarim
    Alsahwa, Bassem
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [32] Intelligent Trajectory Classification for Improved Movement Prediction
    Anagnostopoulos, Christos
    Hadjiefthymiades, Stathes
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2014, 44 (10): : 1301 - 1314
  • [33] A Trajectory Classification Model Using Grammar Parsing
    Bao, Lei
    IEEE ACCESS, 2020, 8 (08): : 218416 - 218423
  • [34] Adversarial Mobility Learning for Human Trajectory Classification
    Gao, Qiang
    Zhang, Fengli
    Yao, Fuming
    Li, Ailing
    Mei, Lin
    Zhou, Fan
    IEEE ACCESS, 2020, 8 (08): : 20563 - 20576
  • [35] Spatio-Temporal GRU for Trajectory Classification
    Liu, Hong-Bin
    Wu, Hao
    Sun, Weiwei
    Lee, Ickjai
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1228 - 1233
  • [36] A method of load classification based on the trajectory sensitivity
    Zheng, Xiaoyu
    He, Renmu
    Ma, Jin
    Tang, Yonghong
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2010, 25 (09): : 145 - 150
  • [37] Hyperparameters of Gaussian Process as Features for Trajectory Classification
    Haranadh, G.
    Sekhar, C. Chandra
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2195 - 2199
  • [38] Automatic Particle Trajectory Classification in Plasma Simulations
    Markidis, Stefano
    Peng, Ivy
    Podobas, Artur
    Jongsuebchoke, Itthinat
    Bengtsson, Gabriel
    Herman, Pawel
    2020 IEEE/ACM WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2020) AND WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S 2020), 2020, : 64 - 71
  • [39] Trajectory clustering using mixed classification models
    Klich, Amna
    Ecochard, Rene
    Subtil, Fabien
    STATISTICS IN MEDICINE, 2021, 40 (15) : 3425 - 3439
  • [40] A Deep Learning Streaming Methodology for Trajectory Classification
    Kontopoulos, Ioannis
    Makris, Antonios
    Tserpes, Konstantinos
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (04)