The Trajectory Interval Forest Classifier for Trajectory Classification

被引:1
|
作者
Landi, Cristiano [1 ]
Guidotti, Riccardo [1 ]
Monreale, Anna [1 ]
Nanni, Mirco [2 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] CNR, ISTI, Pisa, Italy
关键词
GPS Trajectory Classification; Mobility Data Analysis;
D O I
10.1145/3589132.3625617
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
GPS devices generate spatio-temporal trajectories for different types of moving objects. Scientists can exploit them to analyze migration patterns, manage city traffic, monitor the spread of diseases, etc. Many current state-of-the-art models that use this data type require a not negligible running time to be trained. To overcome this issue, we propose the Trajectory Interval Forest (TIF) classifier, an efficient model with high throughput. TIF works by calculating various mobility-related statistics over a set of randomly selected intervals. These statistics are used to create a tabular representation of the data, which can be used as input for any classical classifier. Our results show that TIF is comparable to or better than state-of-art in terms of accuracy and is orders of magnitude faster.
引用
收藏
页码:378 / 381
页数:4
相关论文
共 50 条
  • [41] Research on Ship Classification Based on Trajectory Association
    Zhang, Tao
    Zhao, Shuai
    Chen, Junliang
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2019, PT I, 2019, 11775 : 327 - 340
  • [42] ANALYTiC: An Active Learning System for Trajectory Classification
    Soares, Amilcar, Jr.
    Renso, Chiara
    Matwin, Stan
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2017, 37 (05) : 28 - 39
  • [43] AIS trajectory classification based on IMM data
    Amigo Herrero, Daniel
    Sanchez Pedroche, David
    Garcia Herrero, Jesus
    Molina Lopez, Jose Manuel
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [44] FastATDC: Fast Anomalous Trajectory Detection and Classification
    Ni, Tianle
    Wang, Jingwei
    Ma, Yunlong
    Wang, Shuang
    Liu, Min
    Shen, Weiming
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 1570 - 1575
  • [45] Research on Ship Classification Based on Trajectory Features
    Sheng, Kai
    Liu, Zhong
    Zhou, Dechao
    He, Ailin
    Feng, Chengxu
    JOURNAL OF NAVIGATION, 2018, 71 (01): : 100 - 116
  • [46] Random forest classifier for remote sensing classification
    Pal, M
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (01) : 217 - 222
  • [47] An Improved Random Forest Classifier for Image Classification
    Xu, Baoxun
    Ye, Yunming
    Nie, Lei
    PROCEEDING OF THE IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2012, : 795 - 800
  • [48] PREDICTION OF TURBO AIR CLASSIFIER CUT SIZE BASED ON PARTICLE TRAJECTORY
    Yu, Yuan
    Saadat, Mehdi
    Untaroiu, Alexandrina
    Thomas, Benjamin R.
    Wood, Houston G.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 6, 2016,
  • [49] Ornithopter Trajectory Optimization with Neural Networks and Random Forest
    M. A. Pérez-Cutiño
    F. Rodríguez
    L. D. Pascual
    J. M. Díaz-Báñez
    Journal of Intelligent & Robotic Systems, 2022, 105
  • [50] Ornithopter Trajectory Optimization with Neural Networks and Random Forest
    Perez-Cutino, M. A.
    Rodriguez, F.
    Pascual, L. D.
    Diaz-Banez, J. M.
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 105 (01)