The Trajectory Interval Forest Classifier for Trajectory Classification

被引:1
|
作者
Landi, Cristiano [1 ]
Guidotti, Riccardo [1 ]
Monreale, Anna [1 ]
Nanni, Mirco [2 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] CNR, ISTI, Pisa, Italy
关键词
GPS Trajectory Classification; Mobility Data Analysis;
D O I
10.1145/3589132.3625617
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
GPS devices generate spatio-temporal trajectories for different types of moving objects. Scientists can exploit them to analyze migration patterns, manage city traffic, monitor the spread of diseases, etc. Many current state-of-the-art models that use this data type require a not negligible running time to be trained. To overcome this issue, we propose the Trajectory Interval Forest (TIF) classifier, an efficient model with high throughput. TIF works by calculating various mobility-related statistics over a set of randomly selected intervals. These statistics are used to create a tabular representation of the data, which can be used as input for any classical classifier. Our results show that TIF is comparable to or better than state-of-art in terms of accuracy and is orders of magnitude faster.
引用
收藏
页码:378 / 381
页数:4
相关论文
共 50 条
  • [21] Exploration of interval picard methods for trajectory family propagation
    Villac, B. F.
    Barr, A. H.
    SPACE FLIGHT MECHANICS 2007, VOL 127, PTS 1 AND 2, 2007, 127 : 1585 - +
  • [22] Turbulences and strict return trajectory types of interval mappings
    He, Qiuli
    Sun, Taixiang
    Xi, Hongjian
    Su, Dongwei
    CHAOS SOLITONS & FRACTALS, 2015, 77 : 170 - 173
  • [23] Asymptotics of the trajectory of an interval that contains the preimage of a periodic point
    Fedorenko, V. V.
    NONLINEAR OSCILLATIONS, 2009, 12 (01): : 133 - 136
  • [24] Application of Kalman Fixed Interval Smoothing in Trajectory Correction
    Liu, Jianwei
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 533 - 537
  • [25] TraClass: Trajectory Classification Using Hierarchical Region-Based and Trajectory-Based Clustering
    Lee, Jae-Gil
    Han, Jiawei
    Li, Xiaolei
    Gonzalez, Hector
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2008, 1 (01): : 1081 - 1094
  • [26] A Music Classification Approach Based on the Trajectory of Fifths
    Lukaszewicz, Tomasz
    Kania, Dariusz
    IEEE ACCESS, 2022, 10 : 73494 - 73502
  • [27] Adversarial Autoencoder for trajectory generation and maneuver classification
    Rakos, Oliver
    Becsi, Tamas
    Aradi, Szilard
    INES 2021: 2021 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, 2021,
  • [28] Fuzzy-based trajectory classification and prediction
    Beutel, A
    11. WORKSHOP FUZZY CONTROL DES GMA-FA 5.22, PROCEEDINGS, 2001, 6660 : 30 - 40
  • [29] VT and VF classification using trajectory analysis
    Sarvestani, R. Rohani
    Boostani, R.
    Roopaei, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E55 - E61
  • [30] Driver behavioural classification from trajectory data
    Rigolli, M
    Williams, Q
    Gooding, MJ
    Brady, M
    2005 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2005, : 889 - 894