Photogrammetry for Unconstrained Optical Satellite Imagery With Combined Neural Radiance Fields

被引:3
|
作者
Li, Xiaohe [1 ]
Fan, Zide [1 ]
Liu, Xiaoxuan [1 ]
Zhang, Yidan [1 ]
Ge, Yunping [1 ]
Wen, Lijie [2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100045, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing 100190, Peoples R China
关键词
Transient analysis; Satellite images; Image color analysis; Atmospheric modeling; Image reconstruction; Remote sensing; Optical sensors; Neural radiance fields (NeRFs); photogrammetry; satellite imagery; scene reconstruction; MULTIVIEW STEREO;
D O I
10.1109/LGRS.2023.3337352
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We introduce a novel method tailored for unconstrained multiview optical satellite photogrammetry in time-varying illumination and reflection conditions. Our approach uses continuous radiance fields to represent surface radiance and albedo based on radiometry principles, integrating both static and transient components for satellite photogrammetry. In addition, an innovative self-supervised mechanism is introduced to optimize the learning process which leverages dark regions' accentuation, transient and static composition, and shadow regularization. Evaluations on multidate WorldView-3 images affirm that our model consistently surpasses the state-of-the-art techniques.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [31] Eigengrasp-Conditioned Neural Radiance Fields
    Aizawa, Hiroaki
    Naramura, Itoshi
    IEEE ACCESS, 2023, 11 : 121629 - 121636
  • [32] DDNeRF: Depth Distribution Neural Radiance Fields
    Dadon, David
    Fried, Ohad
    Hel-Or, Yacov
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 755 - 763
  • [33] CopyRNeRF: Protecting the CopyRight of Neural Radiance Fields
    Luo, Ziyuan
    Guo, Qing
    Cheung, Ka Chun
    See, Simon
    Wan, Renjie
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 22344 - 22354
  • [34] CamP: Camera Preconditioning for Neural Radiance Fields
    Park, Keunhong
    Henzler, Philipp
    Mildenhall, Ben
    Barron, Jonathan T.
    Martin-Brualla, Ricardo
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [35] Cross-Spectral Neural Radiance Fields
    Poggi, Matteo
    Ramirez, Pierluigi Zama
    Tosi, Fabio
    Salti, Samuele
    Mattoccia, Stefano
    Di Stefano, Luigi
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 606 - 616
  • [36] NeRFshop: Interactive Editing of Neural Radiance Fields
    Jambon, Clement
    Kerbl, Bernhard
    Kopanas, Georgios
    Diolatzis, Stavros
    Leimkuhler, Thomas
    Drettakis, George
    PROCEEDINGS OF THE ACM ON COMPUTER GRAPHICS AND INTERACTIVE TECHNIQUES, 2023, 6 (01)
  • [37] ScanNeRF: a Scalable Benchmark for Neural Radiance Fields
    De Luigi, Luca
    Bolognini, Damiano
    Domeniconi, Federico
    De Gregorio, Daniele
    Poggi, Matteo
    Di Stefano, Luigi
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 816 - 825
  • [38] Self-Calibrating Neural Radiance Fields
    Jeong, Yoonwoo
    Ahn, Seokjun
    Choy, Christopher
    Anandkumar, Animashree
    Cho, Minsu
    Park, Jaesik
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5826 - 5834
  • [39] Plenoxels: Radiance Fields without Neural Networks
    Fridovich-Keil, Sara
    Yu, Alex
    Tancik, Matthew
    Chen, Qinhong
    Recht, Benjamin
    Kanazawa, Angjoo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5491 - 5500
  • [40] FENeRF: Face Editing in Neural Radiance Fields
    Sun, Jingxiang
    Wang, Xuan
    Zhang, Yong
    Li, Xiaoyu
    Zhang, Qi
    Liu, Yebin
    Wang, Jue
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 7662 - 7672