CopyRNeRF: Protecting the CopyRight of Neural Radiance Fields

被引:4
|
作者
Luo, Ziyuan [1 ,2 ]
Guo, Qing [3 ,4 ]
Cheung, Ka Chun [2 ,5 ]
See, Simon [2 ]
Wan, Renjie [1 ]
机构
[1] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China
[2] NVIDIA, NVIDIA AI Technol Ctr, Santa Clara, CA USA
[3] Agcy Sci Res & Technol, IHPC, Singapore, Singapore
[4] Agcy Sci Res & Technol, CFAR, Singapore, Singapore
[5] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/ICCV51070.2023.02047
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural Radiance Fields (NeRF) have the potential to be a major representation of media. Since training a NeRF has never been an easy task, the protection of its model copyright should be a priority. In this paper, by analyzing the pros and cons of possible copyright protection solutions, we propose to protect the copyright of NeRF models by replacing the original color representation in NeRF with a watermarked color representation. Then, a distortionresistant rendering scheme is designed to guarantee robust message extraction in 2D renderings of NeRF. Our proposed method can directly protect the copyright of NeRF models while maintaining high rendering quality and bit accuracy when compared among optional solutions. Project page: https://luo-ziyuan.github.io/copyrnerf.
引用
收藏
页码:22344 / 22354
页数:11
相关论文
共 50 条
  • [1] Neural Transmitted Radiance Fields
    Zhu, Chengxuan
    Wan, Renjie
    Shi, Boxin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [2] NeRFReN: Neural Radiance Fields with Reflections
    Guo, Yuan-Chen
    Kang, Di
    Bao, Linchao
    He, Yu
    Zhang, Song-Hai
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18388 - 18397
  • [3] Neural Radiance Fields with LiDAR Maps
    Chang, Ming-Fang
    Sharma, Akash
    Kaess, Michael
    Lucey, Simon
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 17868 - 17877
  • [4] Locally Stylized Neural Radiance Fields
    Pang, Hong-Wing
    Hua, Binh-Son
    Yeung, Sai-Kit
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 307 - 316
  • [5] CoNeRF: Controllable Neural Radiance Fields
    Kania, Kacper
    Yi, Kwang Moo
    Kowalski, Marek
    Trzciniski, Tomasz
    Tagliasacchi, Andrea
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18602 - 18611
  • [6] Generative Neural Articulated Radiance Fields
    Bergman, Alexander W.
    Kellnhofer, Petr
    Wang Yifan
    Chan, Eric R.
    Lindell, David B.
    Wetzstein, Gordon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] Hallucinated Neural Radiance Fields in the Wild
    Chen, Xingyu
    Zhang, Qi
    Li, Xiaoyu
    Chen, Yue
    Feng, Ying
    Wang, Xuan
    Wang, Jue
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12933 - 12942
  • [8] PyNeRF: Pyramidal Neural Radiance Fields
    Turki, Haithem
    Zollhofer, Michael
    Richardt, Christian
    Ramanan, Deva
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Neural Radiance Fields Explode on the Scene
    Dellaert, Frank
    COMMUNICATIONS OF THE ACM, 2022, 65 (01) : 98 - 98
  • [10] Reinforcement Learning with Neural Radiance Fields
    Driess, Danny
    Schubert, Ingmar
    Florence, Pete
    Li, Yunzhu
    Toussaint, Marc
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,