Photogrammetry for Unconstrained Optical Satellite Imagery With Combined Neural Radiance Fields

被引:3
|
作者
Li, Xiaohe [1 ]
Fan, Zide [1 ]
Liu, Xiaoxuan [1 ]
Zhang, Yidan [1 ]
Ge, Yunping [1 ]
Wen, Lijie [2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100045, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing 100190, Peoples R China
关键词
Transient analysis; Satellite images; Image color analysis; Atmospheric modeling; Image reconstruction; Remote sensing; Optical sensors; Neural radiance fields (NeRFs); photogrammetry; satellite imagery; scene reconstruction; MULTIVIEW STEREO;
D O I
10.1109/LGRS.2023.3337352
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We introduce a novel method tailored for unconstrained multiview optical satellite photogrammetry in time-varying illumination and reflection conditions. Our approach uses continuous radiance fields to represent surface radiance and albedo based on radiometry principles, integrating both static and transient components for satellite photogrammetry. In addition, an innovative self-supervised mechanism is introduced to optimize the learning process which leverages dark regions' accentuation, transient and static composition, and shadow regularization. Evaluations on multidate WorldView-3 images affirm that our model consistently surpasses the state-of-the-art techniques.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [41] Removing Objects From Neural Radiance Fields
    Weder, Silvan
    Garcia-Hernando, Guillermo
    Monszpart, Aron
    Pollefeys, Marc
    Brostow, Gabriel
    Firman, Michael
    Vicente, Sara
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 16528 - 16538
  • [42] Instant Continual Learning of Neural Radiance Fields
    Po, Ryan
    Dong, Zhengyang
    Bergman, Alexander W.
    Wetzstein, Gordon
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3326 - 3336
  • [43] Interactive geometry editing of Neural Radiance Fields
    Li, Shaoxu
    Pan, Ye
    DISPLAYS, 2024, 84
  • [44] Sampling Neural Radiance Fields for Refractive Objects
    Pan, Jen-I
    Su, Jheng-Wei
    Hsiao, Kai-Wen
    Yen, Ting-Yu
    Chu, Hung-Kuo
    SIGGRAPH ASIA 2022 TECHNICAL COMMUNICATIONS PROCEEDINGS, SIGGRAPH 2022, 2022,
  • [45] Multi-Space Neural Radiance Fields
    Yin, Ze-Xin
    Qiu, Jiaxiong
    Cheng, Ming-Ming
    Ren, Bo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 12407 - 12416
  • [46] VMRF: View Matching Neural Radiance Fields
    Zhang, Jiahui
    Zhan, Fangneng
    Wu, Rongliang
    Yu, Yingchen
    Zhang, Wenqing
    Song, Bai
    Zhang, Xiaoqin
    Lu, Shijian
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6579 - 6587
  • [47] Comparative Assessment of Neural Radiance Fields and Photogrammetry in Digital Heritage: Impact of Varying Image Conditions on 3D Reconstruction
    Croce, Valeria
    Billi, Dario
    Caroti, Gabriella
    Piemonte, Andrea
    De Luca, Livio
    Veron, Philippe
    REMOTE SENSING, 2024, 16 (02)
  • [48] Leveraging Neural Radiance Fields for Large-Scale 3D Reconstruction from Aerial Imagery
    Hermann, Max
    Kwak, Hyovin
    Ruf, Boitumelo
    Weinmann, Martin
    REMOTE SENSING, 2024, 16 (24)
  • [49] Comparison of satellite imagery DEMs produced using photogrammetry and radargrammetry techniques
    Ricchetti, E
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 2903 - 2906
  • [50] Estimation of the sunglint radiance field from optical satellite imagery over open ocean: Multidirectional approach and polarization aspects
    Harmel, Tristan
    Chami, Malik
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (01) : 76 - 90