Photogrammetry for Unconstrained Optical Satellite Imagery With Combined Neural Radiance Fields

被引:3
|
作者
Li, Xiaohe [1 ]
Fan, Zide [1 ]
Liu, Xiaoxuan [1 ]
Zhang, Yidan [1 ]
Ge, Yunping [1 ]
Wen, Lijie [2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100045, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing 100190, Peoples R China
关键词
Transient analysis; Satellite images; Image color analysis; Atmospheric modeling; Image reconstruction; Remote sensing; Optical sensors; Neural radiance fields (NeRFs); photogrammetry; satellite imagery; scene reconstruction; MULTIVIEW STEREO;
D O I
10.1109/LGRS.2023.3337352
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We introduce a novel method tailored for unconstrained multiview optical satellite photogrammetry in time-varying illumination and reflection conditions. Our approach uses continuous radiance fields to represent surface radiance and albedo based on radiometry principles, integrating both static and transient components for satellite photogrammetry. In addition, an innovative self-supervised mechanism is introduced to optimize the learning process which leverages dark regions' accentuation, transient and static composition, and shadow regularization. Evaluations on multidate WorldView-3 images affirm that our model consistently surpasses the state-of-the-art techniques.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [21] Generative Neural Articulated Radiance Fields
    Bergman, Alexander W.
    Kellnhofer, Petr
    Wang Yifan
    Chan, Eric R.
    Lindell, David B.
    Wetzstein, Gordon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [22] Hallucinated Neural Radiance Fields in the Wild
    Chen, Xingyu
    Zhang, Qi
    Li, Xiaoyu
    Chen, Yue
    Feng, Ying
    Wang, Xuan
    Wang, Jue
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12933 - 12942
  • [23] PyNeRF: Pyramidal Neural Radiance Fields
    Turki, Haithem
    Zollhofer, Michael
    Richardt, Christian
    Ramanan, Deva
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [24] Neural Radiance Fields Explode on the Scene
    Dellaert, Frank
    COMMUNICATIONS OF THE ACM, 2022, 65 (01) : 98 - 98
  • [25] Reinforcement Learning with Neural Radiance Fields
    Driess, Danny
    Schubert, Ingmar
    Florence, Pete
    Li, Yunzhu
    Toussaint, Marc
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [26] EfficientNeRF - Efficient Neural Radiance Fields
    Hu, Tao
    Liu, Shu
    Chen, Yilun
    Shen, Tiancheng
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12892 - 12901
  • [27] Nerfies: Deformable Neural Radiance Fields
    Park, Keunhong
    Sinha, Utkarsh
    Barron, Jonathan T.
    Bouaziz, Sofien
    Goldman, Dan B.
    Seitz, Steven M.
    Martin-Brualla, Ricardo
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5845 - 5854
  • [28] Convolutional Neural Opacity Radiance Fields
    Luo, Haimin
    Chen, Anpei
    Zhang, Qixuan
    Pang, Bai
    Wu, Minye
    Xu, Lan
    Yu, Jingyi
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP), 2021,
  • [29] SPARSESAT-NERF: DENSE DEPTH SUPERVISED NEURAL RADIANCE FIELDS FOR SPARSE SATELLITE IMAGES
    Zhang, Lulin
    Rupnik, Ewelina
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 895 - 902
  • [30] SatensoRF: Fast Satellite Tensorial Radiance Field for Multidate Satellite Imagery of Large Size
    Zhang, Tongtong
    Zhou, Yu
    Li, Yuanxiang
    Wei, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15