Multifidelity data fusion in convolutional encoder/decoder networks

被引:7
|
作者
Partin, Lauren [1 ]
Geraci, Gianluca [2 ]
Rushdi, Ahmad A. [3 ]
Eldred, Michael S. [2 ]
Schiavazzi, Daniele E. [1 ]
机构
[1] Univ Notre Dame, Crowley Hall, Notre Dame, IN 46556 USA
[2] Sandia Natl Labs, POB 5800,Mail Stop 1318, Albuquerque, NM 87185 USA
[3] Stanford Univ, 450 Serra Mall, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Multifidelity data fusion; Convolutional encoder-deconder networks; Uncertainty quantification; Pressure Poisson equation; NEURAL-NETWORKS;
D O I
10.1016/j.jcp.2022.111666
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We analyze the regression accuracy of convolutional neural networks assembled from encoders, decoders and skip connections and trained with multifidelity data. Besides requiring significantly less trainable parameters than equivalent fully connected networks, encoder, decoder, encoder-decoder or decoder-encoder architectures can learn the mapping between inputs to outputs of arbitrary dimensionality. We demonstrate their accuracy when trained on a few high-fidelity and many low-fidelity data generated from models ranging from one-dimensional functions to Poisson equation solvers in two-dimensions. We finally discuss a number of implementation choices that improve the reliability of the uncertainty estimates generated by Monte Carlo DropBlocks, and compare uncertainty estimates among low-, high-and multifidelity approaches. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] DeepCEDNet: An Efficient Deep Convolutional Encoder-Decoder Networks for ECG Signal Enhancement
    Bing, Pingping
    Liu, Wei
    Zhang, Zhihua
    IEEE ACCESS, 2021, 9 : 56699 - 56708
  • [22] Detection of black box signal based on encoder-decoder fully convolutional networks
    Ji, Huazhong
    Zhou, Jie
    Pan, Xiang
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [23] Implementation of Convolutional Encoder and Viterbi Decoder using VHDL
    Wong, Yin Sweet
    Ong, Wen Jian
    Chong, Jin Hui
    Ng, Chee Kyun
    Noordin, Nor Kamariah
    2009 IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT: SCORED 2009, PROCEEDINGS, 2009, : 22 - 25
  • [24] A Graph Convolutional Encoder and Decoder Model for Rumor Detection
    Lin, Hongbin
    Zhang, Xi
    Fu, Xianghua
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 300 - 306
  • [25] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [26] MEDA: Multi-output Encoder-Decoder for Spatial Attention in Convolutional Neural Networks
    Li, Huayu
    Razi, Abolfazl
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 2087 - 2091
  • [27] Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation
    Budak, Umit
    Guo, Yanhui
    Tanyildizi, Erkan
    Sengur, Abdulkadir
    MEDICAL HYPOTHESES, 2020, 134
  • [28] Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes
    Khoshdeli, Mina
    Winkelmaier, Garrett
    Parvin, Bahram
    BMC BIOINFORMATICS, 2018, 19
  • [29] Deep Convolutional Symmetric Encoder-Decoder Neural Networks to Predict Students' Visual Attention
    Hachaj, Tomasz
    Stolinska, Anna
    Andrzejewska, Magdalena
    Czerski, Piotr
    SYMMETRY-BASEL, 2021, 13 (12):
  • [30] Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes
    Mina Khoshdeli
    Garrett Winkelmaier
    Bahram Parvin
    BMC Bioinformatics, 19