Multifidelity data fusion in convolutional encoder/decoder networks

被引:7
|
作者
Partin, Lauren [1 ]
Geraci, Gianluca [2 ]
Rushdi, Ahmad A. [3 ]
Eldred, Michael S. [2 ]
Schiavazzi, Daniele E. [1 ]
机构
[1] Univ Notre Dame, Crowley Hall, Notre Dame, IN 46556 USA
[2] Sandia Natl Labs, POB 5800,Mail Stop 1318, Albuquerque, NM 87185 USA
[3] Stanford Univ, 450 Serra Mall, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Multifidelity data fusion; Convolutional encoder-deconder networks; Uncertainty quantification; Pressure Poisson equation; NEURAL-NETWORKS;
D O I
10.1016/j.jcp.2022.111666
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We analyze the regression accuracy of convolutional neural networks assembled from encoders, decoders and skip connections and trained with multifidelity data. Besides requiring significantly less trainable parameters than equivalent fully connected networks, encoder, decoder, encoder-decoder or decoder-encoder architectures can learn the mapping between inputs to outputs of arbitrary dimensionality. We demonstrate their accuracy when trained on a few high-fidelity and many low-fidelity data generated from models ranging from one-dimensional functions to Poisson equation solvers in two-dimensions. We finally discuss a number of implementation choices that improve the reliability of the uncertainty estimates generated by Monte Carlo DropBlocks, and compare uncertainty estimates among low-, high-and multifidelity approaches. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] VLSI IMPLEMENTATION OF WiMax CONVOLUTIONAL TURBO CODE ENCODER AND DECODER
    Martina, Maurizio
    Nicola, Mario
    Masera, Guido
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2009, 18 (03) : 535 - 564
  • [42] Video intra prediction using convolutional encoder decoder network
    Jin, Zhipeng
    An, Ping
    Shen, Liquan
    NEUROCOMPUTING, 2020, 394 : 168 - 177
  • [43] Low-Light Image Enhancement Based on Deep Symmetric Encoder-Decoder Convolutional Networks
    Li, Qiming
    Wu, Haishen
    Xu, Lu
    Wang, Likai
    Lv, Yueqi
    Kang, Xinjie
    SYMMETRY-BASEL, 2020, 12 (03):
  • [44] Deep encoder-decoder hierarchical convolutional neural networks for conjugate heat transfer surrogate modeling
    Ebbs-Picken, Takiah
    Romero, David A.
    Da Silva, Carlos M.
    Amon, Cristina H.
    APPLIED ENERGY, 2024, 372
  • [45] Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections
    Mao, Xiao-Jiao
    Shen, Chunhua
    Yang, Yu-Bin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [46] Cloud and Snow Segmentation in Satellite Images Using an Encoder-Decoder Deep Convolutional Neural Networks
    Zheng, Kai
    Li, Jiansheng
    Ding, Lei
    Yang, Jianfeng
    Zhang, Xucheng
    Zhang, Xun
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (07)
  • [47] Deep Convolutional Encoder-Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media
    Mo, Shaoxing
    Zhu, Yinhao
    Zabaras, Nicholas
    Shi, Xiaoqing
    Wu, Jichun
    WATER RESOURCES RESEARCH, 2019, 55 (01) : 703 - 728
  • [48] Brain stroke classification and segmentation using encoder-decoder based deep convolutional neural networks
    Yalcin, Sercan
    Vural, Huseyin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [49] Inferring Appliance Energy Usage from Smart Meters using Fully Convolutional Encoder Decoder Networks
    Garcia, Felan Carlo C.
    Macabebe, Erees Queen B.
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2075 - 2078
  • [50] Use of convolutional neural networks with encoder-decoder structure for predicting the inverse operator in hydraulic tomography
    Jardani, A.
    Vu, T. M.
    Fischer, P.
    JOURNAL OF HYDROLOGY, 2022, 604