Multifidelity data fusion in convolutional encoder/decoder networks

被引:7
|
作者
Partin, Lauren [1 ]
Geraci, Gianluca [2 ]
Rushdi, Ahmad A. [3 ]
Eldred, Michael S. [2 ]
Schiavazzi, Daniele E. [1 ]
机构
[1] Univ Notre Dame, Crowley Hall, Notre Dame, IN 46556 USA
[2] Sandia Natl Labs, POB 5800,Mail Stop 1318, Albuquerque, NM 87185 USA
[3] Stanford Univ, 450 Serra Mall, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Multifidelity data fusion; Convolutional encoder-deconder networks; Uncertainty quantification; Pressure Poisson equation; NEURAL-NETWORKS;
D O I
10.1016/j.jcp.2022.111666
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We analyze the regression accuracy of convolutional neural networks assembled from encoders, decoders and skip connections and trained with multifidelity data. Besides requiring significantly less trainable parameters than equivalent fully connected networks, encoder, decoder, encoder-decoder or decoder-encoder architectures can learn the mapping between inputs to outputs of arbitrary dimensionality. We demonstrate their accuracy when trained on a few high-fidelity and many low-fidelity data generated from models ranging from one-dimensional functions to Poisson equation solvers in two-dimensions. We finally discuss a number of implementation choices that improve the reliability of the uncertainty estimates generated by Monte Carlo DropBlocks, and compare uncertainty estimates among low-, high-and multifidelity approaches. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Trichomonas vaginalis Detection Using Two Convolutional Neural Networks with Encoder-Decoder Architecture
    Wang, Xiangzhou
    Du, Xiaohui
    Liu, Lin
    Ni, Guangming
    Zhang, Jing
    Liu, Juanxiu
    Liu, Yong
    APPLIED SCIENCES-BASEL, 2021, 11 (06):
  • [32] Data Prediction Based Encoder-Decoder Learning in Wireless Sensor Networks
    Njoya, Arouna Ndam
    Tchangmena, Allassan A. Nken
    Ari, Ado Adamou Abba
    Gueroui, Abdelhak
    Thron, Christopher
    Mpinda, Berthine Nyunga
    Thiare, Ousmane
    Tonye, Emmanuel
    IEEE ACCESS, 2022, 10 : 109340 - 109356
  • [33] Geospatial Data Disaggregation through Self-Trained Encoder-Decoder Convolutional Models
    Monteiro, Joao
    Martins, Bruno
    Costa, Miguel
    Pires, Joao M.
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (09)
  • [34] NDE Data Correlation Using Encoder–Decoder Networks with Wavelet Scalogram Images
    Mozhgan Momtaz Dargahi
    David Lattanzi
    Hoda Azari
    Journal of Nondestructive Evaluation, 2022, 41
  • [35] Multifidelity Prediction Framework with Convolutional Neural Networks Using High-Dimensional Data
    Emre Tekaslan, Huseyin
    Nikbay, Melike
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2023, 20 (05): : 264 - 275
  • [36] Interpretable Transformations with Encoder-Decoder Networks
    Worrall, Daniel E.
    Garbin, Stephan J.
    Turmukhambetov, Daniyar
    Brostow, Gabriel J.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5737 - 5746
  • [37] Using Convolutional Encoder-Decoder for Document Image Binarization
    Peng, Xujun
    Cao, Huaigu
    Natarajan, Prem
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 708 - 713
  • [38] A Deep Convolutional Encoder–Decoder–Restorer Architecture for Image Deblurring
    Yiqing Fan
    Chaoqun Hong
    Guanghui Zeng
    Lijuan Liu
    Neural Processing Letters, 56
  • [39] Deep Convolutional Encoder-Decoder for Myelin and Axon Segmentation
    Mesbah, Rassoul
    McCane, Brendan
    Mills, Steven
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2016, : 226 - 231
  • [40] Residual Encoder and Convolutional Decoder Neural Network for Glioma Segmentation
    Pawar, Kamlesh
    Chen, Zhaolin
    Shah, N. Jon
    Egan, Gary
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 263 - 273