An explicit Euler-Maruyama method for McKean-Vlasov SDEs driven by fractional Brownian motion

被引:2
|
作者
He, Jie [1 ]
Gao, Shuaibin [2 ]
Zhan, Weijun [3 ]
Guo, Qian [2 ]
机构
[1] Jiangsu Second Normal Univ, Dept Math, Nanjing 210013, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Propagation of chaos; Explicit Euler-Maruyama method; McKean-Vlasov SDEs; Fractional Brownian motion; Interacting particle system; DISTRIBUTION DEPENDENT SDES; PARTICLE METHOD; CONVERGENCE; FLUCTUATIONS; DYNAMICS;
D O I
10.1016/j.cnsns.2023.107763
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the theory of propagation of chaos and propose an Euler-Maruyama method for McKean-Vlasov SDEs driven by fractional Brownian motion with Hurst parameter H is an element of (0, 1/2) boolean OR (1/2, 1). Meanwhile, upper bounds for errors in the Euler-Maruyama method are obtained. Two numerical examples are demonstrated to verify the theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Distribution dependent SDEs driven by additive fractional Brownian motion
    Lucio Galeati
    Fabian A. Harang
    Avi Mayorcas
    Probability Theory and Related Fields, 2023, 185 : 251 - 309
  • [42] Distribution dependent SDEs driven by additive fractional Brownian motion
    Galeati, Lucio
    Harang, Fabian A.
    Mayorcas, Avi
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (1-2) : 251 - 309
  • [43] Harnack inequalities for SDEs driven by subordinator fractional Brownian motion
    Li, Zhi
    Yan, Litan
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 45 - 53
  • [44] An Euler-Maruyama method and its fast implementation for multiterm fractional stochastic differential equations
    Huang, Jianfei
    Huo, Zhenyang
    Zhang, Jingna
    Tang, Yifa
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 1556 - 1573
  • [45] HARNACK INEQUALITIES FOR FUNCTIONAL SDES DRIVEN BY SUBORDINATE FRACTIONAL BROWNIAN MOTION
    LI, Z. H. I.
    Peng, Y. A. R. O. N. G.
    Yan, L. I. T. A. N.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (04): : 1429 - 1453
  • [46] Harnack inequalities and applications for functional SDEs driven by fractional Brownian motion
    Li, Zhi
    Luo, Jiaowan
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (04) : 213 - 226
  • [47] AN EXPLICIT MILSTEIN-TYPE SCHEME FOR INTERACTING PARTICLESYSTEMS AND MCKEAN-VLASOV SDES WITH COMMON NOISE ANDNON-DIFFERENTIABLE DRIFT COEFFICIENTS
    Biswas, Sani
    Kumar, Chaman
    Neelima
    Dos Reis, Goncalo
    Reisinger, Christoph
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (02): : 2326 - 2363
  • [48] A fast Euler-Maruyama method for Riemann-Liouville stochastic fractional nonlinear differential equations
    Zhang, Jingna
    Lv, Jingyun
    Huang, Jianfei
    Tang, Yifa
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 446
  • [49] On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion
    Nourdin, I
    Simon, T
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (09) : 907 - 912
  • [50] Modified Euler approximation of stochastic differential equation driven by Brownian motion and fractional Brownian motion
    Liu, Weiguo
    Luo, Jiaowan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (15) : 7427 - 7443