An explicit Euler-Maruyama method for McKean-Vlasov SDEs driven by fractional Brownian motion

被引:2
|
作者
He, Jie [1 ]
Gao, Shuaibin [2 ]
Zhan, Weijun [3 ]
Guo, Qian [2 ]
机构
[1] Jiangsu Second Normal Univ, Dept Math, Nanjing 210013, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Propagation of chaos; Explicit Euler-Maruyama method; McKean-Vlasov SDEs; Fractional Brownian motion; Interacting particle system; DISTRIBUTION DEPENDENT SDES; PARTICLE METHOD; CONVERGENCE; FLUCTUATIONS; DYNAMICS;
D O I
10.1016/j.cnsns.2023.107763
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the theory of propagation of chaos and propose an Euler-Maruyama method for McKean-Vlasov SDEs driven by fractional Brownian motion with Hurst parameter H is an element of (0, 1/2) boolean OR (1/2, 1). Meanwhile, upper bounds for errors in the Euler-Maruyama method are obtained. Two numerical examples are demonstrated to verify the theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Limiting Behavior of Solutions to Mckean-Vlasov Fractional Sdes With HöLder Diffusion Coefficients
    Wang, Wenya
    Guo, Zhongkai
    Wang, Yanmin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [22] Strong convergence of the Euler-Maruyama approximation for a class of Levy-driven SDEs
    Kuehn, Franziska
    Schilling, Rene L.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (08) : 2654 - 2680
  • [23] Estimate of transition kernel for Euler-Maruyama scheme for SDEs driven by ?-stable noise and applications
    Huang, Xing
    Suo, Yongqiang
    Yuan, Chenggui
    NUMERICAL ALGORITHMS, 2023, 94 (03) : 1381 - 1402
  • [24] Large deviation for slow-fast McKean-Vlasov stochastic differential equations driven by fractional Brownian motions and Brownian motions
    Wu, Hao
    Hu, Junhao
    Yuan, Chenggui
    STOCHASTICS AND DYNAMICS, 2024,
  • [25] Stability equivalence between the stochastic differential delay equations driven by G-Brownian motion and the Euler-Maruyama method
    Deng, Shounian
    Fei, Chen
    Fei, Weiyin
    Mao, Xuerong
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 138 - 146
  • [26] A fast Euler-Maruyama method for fractional stochastic differential equations
    Jingna Zhang
    Yifa Tang
    Jianfei Huang
    Journal of Applied Mathematics and Computing, 2023, 69 : 273 - 291
  • [27] Multidimensional stable driven McKean-Vlasov SDEs with distributional interaction kernel: a regularization by noise perspective
    de Raynal, P. -E. Chaudru
    Jabir, J. -f.
    Menozzi, S.
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025, 13 (01): : 367 - 420
  • [28] CONVERGENCE RATE OF THE EULER-MARUYAMA SCHEME TO DENSITY DEPENDENT SDES DRIVEN BY α-STABLE ADDITIVE NOISE
    Song, Ke
    Hao, Zimo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,
  • [29] A fast Euler-Maruyama method for fractional stochastic differential equations
    Zhang, Jingna
    Tang, Yifa
    Huang, Jianfei
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 273 - 291
  • [30] Convergence of the Euler-Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient
    Leobacher, Gunther
    Szolgyenyi, Michaela
    NUMERISCHE MATHEMATIK, 2018, 138 (01) : 219 - 239