An explicit Euler-Maruyama method for McKean-Vlasov SDEs driven by fractional Brownian motion

被引:2
|
作者
He, Jie [1 ]
Gao, Shuaibin [2 ]
Zhan, Weijun [3 ]
Guo, Qian [2 ]
机构
[1] Jiangsu Second Normal Univ, Dept Math, Nanjing 210013, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Propagation of chaos; Explicit Euler-Maruyama method; McKean-Vlasov SDEs; Fractional Brownian motion; Interacting particle system; DISTRIBUTION DEPENDENT SDES; PARTICLE METHOD; CONVERGENCE; FLUCTUATIONS; DYNAMICS;
D O I
10.1016/j.cnsns.2023.107763
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the theory of propagation of chaos and propose an Euler-Maruyama method for McKean-Vlasov SDEs driven by fractional Brownian motion with Hurst parameter H is an element of (0, 1/2) boolean OR (1/2, 1). Meanwhile, upper bounds for errors in the Euler-Maruyama method are obtained. Two numerical examples are demonstrated to verify the theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Nonlinear Fokker-Planck equations with fractional Laplacian and McKean-Vlasov SDEs with Lévy noise
    Barbu, Viorel
    Roeckner, Michael
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 189 (3-4) : 849 - 878
  • [32] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S55 - S98
  • [33] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Zhi Li
    Liping Xu
    Jie Zhou
    Applied Mathematics & Optimization, 2021, 84 : 55 - 98
  • [34] Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion
    Hairer, M.
    Pillai, N. S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02): : 601 - 628
  • [35] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    Applied Mathematics and Optimization, 2021, 84 : 55 - 98
  • [36] Strong convergence of a Euler-Maruyama method for fractional stochastic Langevin equations
    Ahmadova, Arzu
    Mahmudov, Nazim, I
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 429 - 448
  • [37] The Truncated Euler-Maruyama Method for Caputo Fractional Stochastic Differential Equations
    Liu, Jiajun
    Zhong, Qiu
    Huang, Jianfei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [38] On the Euler-Maruyama scheme for spectrally one-sided Levy driven SDEs with Holder continuous coefficients
    Li, Libo
    Taguchi, Dai
    STATISTICS & PROBABILITY LETTERS, 2019, 146 : 15 - 26
  • [39] Convergence of Euler-Maruyama Method for Stochastic Differential Equations Driven by alpha-stable Levy Motion
    Tarami, Bahram
    Avaji, Mohsen
    JOURNAL OF MATHEMATICAL EXTENSION, 2018, 12 (03) : 33 - 54
  • [40] Euler simulation of interacting particle systems and McKean-Vlasov SDEs with fully super-linear growth drifts in space and interaction
    Chen, Xingyuan
    dos Reis, Goncalo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (02) : 751 - 796