Distribution dependent SDEs driven by additive fractional Brownian motion

被引:14
|
作者
Galeati, Lucio [1 ]
Harang, Fabian A. [2 ,3 ]
Mayorcas, Avi [4 ]
机构
[1] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
[2] Univ Oslo, Dept Math, POB 1053, N-0316 Oslo, Norway
[3] BI Norwegian Business Sch, Dept Econ, Nydalsveien 37, Oslo, Norway
[4] Univ Cambridge, DPMMS, CMS, Wilberforce Rd, Cambridge CB3 0WB, England
关键词
Distribution dependent SDEs; Singular drifts; Regularization by noise; Fractional Brownian motion; MEAN-FIELD LIMIT; DIFFERENTIAL-EQUATIONS; REGULARIZATION; PROPAGATION; CHAOS;
D O I
10.1007/s00440-022-01145-w
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter H is an element of (0, 1). We establish strong well-posedness under a variety of assumptions on the drift; these include the choice B(., mu) = (f * mu)(.) + g(.), f, g is an element of B-infinity,infinity(alpha), alpha > 1 - 1/2H, thus extending the results by Catellier and Gubinelli (Stochast Process Appl 126(8):2323-2366, 2016) to the distribution dependent case. The proofs rely on some novel stability estimates for singular SDEs driven by fractional Brownian motion and the use of Wasserstein distances.
引用
收藏
页码:251 / 309
页数:59
相关论文
共 50 条
  • [1] Distribution dependent SDEs driven by additive fractional Brownian motion
    Lucio Galeati
    Fabian A. Harang
    Avi Mayorcas
    Probability Theory and Related Fields, 2023, 185 : 251 - 309
  • [2] Distribution dependent SDEs driven by fractional Brownian motions
    Fan, Xiliang
    Huang, Xing
    Suo, Yongqiang
    Yuan, Chenggui
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 151 : 23 - 67
  • [3] Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions
    Fan, Xiliang
    Yu, Ting
    Yuan, Chenggui
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 164 : 383 - 415
  • [4] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S55 - S98
  • [5] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Zhi Li
    Liping Xu
    Jie Zhou
    Applied Mathematics & Optimization, 2021, 84 : 55 - 98
  • [6] Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion
    Hairer, M.
    Pillai, N. S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02): : 601 - 628
  • [7] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    Applied Mathematics and Optimization, 2021, 84 : 55 - 98
  • [8] Harnack inequalities for SDEs driven by subordinator fractional Brownian motion
    Li, Zhi
    Yan, Litan
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 45 - 53
  • [9] HARNACK INEQUALITIES FOR FUNCTIONAL SDES DRIVEN BY SUBORDINATE FRACTIONAL BROWNIAN MOTION
    LI, Z. H. I.
    Peng, Y. A. R. O. N. G.
    Yan, L. I. T. A. N.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (04): : 1429 - 1453
  • [10] Harnack inequalities and applications for functional SDEs driven by fractional Brownian motion
    Li, Zhi
    Luo, Jiaowan
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (04) : 213 - 226