Saddle-node bifurcation and Bogdanov-Takens bifurcation of a SIRS epidemic model with nonlinear incidence rate

被引:3
|
作者
Cui, Wenzhe [1 ]
Zhao, Yulin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
SIRS epidemic model; Nonlinear incidence rate; Saddle-node bifurcation; Bogdanov-Takens bifurcation; NONMONOTONE; BEHAVIOR;
D O I
10.1016/j.jde.2023.11.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bogdanov-Takens bifurcation of the SIRS epidemic model with nonlinear incidence rate was studied by Ruan and Wang (2003) [11], Tang et al. (2008) [13] and Lu et al. (2019) [9] in recent years. The results in the mentioned papers showed that the SIRS epidemic model with nonlinear incidence rate kI2/(1 + omega I2) can undergo a Bogdanov-Takens bifurcation of codimension two. In this paper we study the SIRS epidemic model with nonlinear incidence rate kIp/(1 + omega Iq) for general p and q. The bifurcation analysis indicates that there is a saddle-node or a cusp of codimension two for various parameter values and the model can undergo a saddle-node bifurcation or a Bogdanov-Takens bifurcation of codimension two if suitable bifurcation parameters are selected. It means that there are some SIRS epidemic models which have a limit cycle or a homoclinic loop. Moreover, it is also shown that the codimension of BogdanovTakens bifurcation is at most two. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:252 / 278
页数:27
相关论文
共 50 条
  • [41] An improved direct method for solving power systems Bogdanov-Takens bifurcation
    Fang, Yong
    Yang, Hong-Geng
    Li, Lan-Fang
    Sichuan Daxue Xuebao (Gongcheng Kexue Ban)/Journal of Sichuan University (Engineering Science Edition), 2012, 44 : 158 - 161
  • [42] Shilnikov's saddle-node bifurcation
    Glendinning, P
    Sparrow, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (06): : 1153 - 1160
  • [43] A DOUBLE SADDLE-NODE BIFURCATION THEOREM
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) : 2923 - 2933
  • [44] The Bogdanov-Takens bifurcation analysis on a three dimensional recurrent neural network
    Maleki, Farzaneh
    Beheshti, Babak
    Hajihosseini, Amirhossein
    Lamooki, Gholam Reza Rokni
    NEUROCOMPUTING, 2010, 73 (16-18) : 3066 - 3078
  • [45] Degenerate Bogdanov-Takens bifurcation of codimension 4 in Holling-Tanner model with harvesting
    Xiang, Chuang
    Lu, Min
    Huang, Jicai
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 314 : 370 - 417
  • [46] On saddle-node bifurcation and chaos of satellites
    Beda, PB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 4881 - 4886
  • [47] A saddle-node bifurcation model of magnetic reconnection onset
    Cassak, P. A.
    Shay, M. A.
    Drake, J. F.
    PHYSICS OF PLASMAS, 2010, 17 (06)
  • [48] Global indeterminacy of the equilibrium in the Chamley model of endogenous growth in the vicinity of a Bogdanov-Takens bifurcation
    Bella, Giovanni
    Mattana, Paolo
    MATHEMATICAL SOCIAL SCIENCES, 2014, 71 : 69 - 79
  • [49] Bogdanov-Takens Bifurcation of a Class of Delayed Reaction-Diffusion System
    Cao, Jianzhi
    Wang, Peiguang
    Yuan, Rong
    Mei, Yingying
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (06):
  • [50] Stabilization and positioning control of a rolling disk by using the Bogdanov-Takens bifurcation
    Polo, Manuel F. Perez
    Molina, Manuel Perez
    Chica, Javier Gil
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (17) : 1450 - 1469