Saddle-node bifurcation and Bogdanov-Takens bifurcation of a SIRS epidemic model with nonlinear incidence rate

被引:3
|
作者
Cui, Wenzhe [1 ]
Zhao, Yulin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
SIRS epidemic model; Nonlinear incidence rate; Saddle-node bifurcation; Bogdanov-Takens bifurcation; NONMONOTONE; BEHAVIOR;
D O I
10.1016/j.jde.2023.11.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bogdanov-Takens bifurcation of the SIRS epidemic model with nonlinear incidence rate was studied by Ruan and Wang (2003) [11], Tang et al. (2008) [13] and Lu et al. (2019) [9] in recent years. The results in the mentioned papers showed that the SIRS epidemic model with nonlinear incidence rate kI2/(1 + omega I2) can undergo a Bogdanov-Takens bifurcation of codimension two. In this paper we study the SIRS epidemic model with nonlinear incidence rate kIp/(1 + omega Iq) for general p and q. The bifurcation analysis indicates that there is a saddle-node or a cusp of codimension two for various parameter values and the model can undergo a saddle-node bifurcation or a Bogdanov-Takens bifurcation of codimension two if suitable bifurcation parameters are selected. It means that there are some SIRS epidemic models which have a limit cycle or a homoclinic loop. Moreover, it is also shown that the codimension of BogdanovTakens bifurcation is at most two. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:252 / 278
页数:27
相关论文
共 50 条