The Bogdanov-Takens bifurcation analysis on a three dimensional recurrent neural network

被引:19
|
作者
Maleki, Farzaneh [1 ]
Beheshti, Babak [1 ]
Hajihosseini, Amirhossein [1 ]
Lamooki, Gholam Reza Rokni [1 ,2 ]
机构
[1] Univ Tehran, Ctr Excellence Biomath, Sch Math Stat & Comp Sci, Tehran 1417614411, Iran
[2] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran 1417614411, Iran
关键词
Recurrent neural networks; Bogdanov-Takens bifurcation; Hopf bifurcation; Pitchfork bifurcation; Homoclinic orbit; Heteroclinic orbit; TIME-VARYING DELAYS; GLOBAL EXPONENTIAL STABILITY; DISTRIBUTED DELAYS; ACTIVATION FUNCTIONS; ASYMPTOTIC STABILITY; PERIODIC-SOLUTIONS; ROBUST STABILITY; HOPF-BIFURCATION; GRADED RESPONSE; DISCRETE;
D O I
10.1016/j.neucom.2010.06.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A class of recurrent neural networks is investigated in the vicinity of the Bogdanov-Takens bifurcation point in the parameter space when the slope of the transfer function of the neurons at the origin is not equal to one. It will be shown that two different bifurcation diagrams can be constructed. In each bifurcation diagram, there are critical values for the parameters of the network for which curves of pitchfork and Hopf bifurcation intersect each other at a point where the linear part of the system that describes the network, has a pair of simple zero eigenvalues. As curves of homoclinic and heteroclinic bifurcation emanate from the Bogdanov-Takens point, a complicated behavior is observed by the variation of weights in the recurrent neural network. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3066 / 3078
页数:13
相关论文
共 50 条
  • [1] Bogdanov-Takens Bifurcation
    Liebscher, Stefan
    BIFURCATION WITHOUT PARAMETERS, 2015, 2117 : 81 - 102
  • [2] Bogdanov-Takens Bifurcation in a Neutral Delayed Hopfield Neural Network with Bidirectional Connection
    Achouri, Houssem
    Aouiti, Chaouki
    Ben Hamed, Bassem
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2020, 13 (06)
  • [3] Improved Homoclinic Predictor for Bogdanov-Takens Bifurcation
    Kuznetsov, Yu. A.
    Meijer, H. G. E.
    Al Hdaibat, B.
    Govaerts, W.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [4] Bogdanov-Takens bifurcation in a neutral BAM neural networks model with delays
    Wang, Runxia
    Liu, Haihong
    Feng, Fei
    Yan, Fang
    IET SYSTEMS BIOLOGY, 2017, 11 (06) : 163 - 173
  • [5] BOGDANOV-TAKENS SINGULARITY OF A NEURAL NETWORK MODEL WITH DELAY
    Wu, Xiaoqin P.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, : 175 - 187
  • [6] Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms
    Broer, H
    Roussarie, R
    Simo, C
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1996, 16 : 1147 - 1172
  • [7] Chaotic zone in the Bogdanov-Takens bifurcation for diffeomorphisms
    Gelfreich, V
    ANALYSIS AND APPLICATIONS - ISAAC 2001, 2003, 10 : 187 - 197
  • [8] Bifurcation Analysis of Bogdanov-Takens Bifurcations in Delay Differential Equations
    Bosschaert, M. M.
    Kuznetsov, Yu. A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2024, 23 (01): : 553 - 591
  • [9] Bogdanov-Takens Bifurcation Analysis of a Learning-Process Model
    Zhu, Zhenliang
    Guan, Yuxian
    AXIOMS, 2023, 12 (09)
  • [10] Bogdanov-Takens bifurcation in a tri-neuron BAM neural network model with multiple delays
    Dong, Tao
    Liao, Xiaofeng
    NONLINEAR DYNAMICS, 2013, 71 (03) : 583 - 595