Synchronization in a Kuramoto mean field game

被引:3
|
作者
Carmona, Rene [1 ]
Cormier, Quentin [2 ]
Soner, H. Mete [1 ,3 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USA
[2] Inst Polytech Paris, Inria, CMAP, Palaiseau, France
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Mean field games; Kuramoto model; synchronization; viscosity solutions; VISCOSITY SOLUTIONS; MODEL; DYNAMICS;
D O I
10.1080/03605302.2023.2264611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Kuramoto model is studied in the setting of an infinite horizon mean field game. The system is shown to exhibit both synchronization and phase transition. Incoherence below a critical value of the interaction parameter is demonstrated by the stability of the uniform distribution. Above this value, the game bifurcates and develops self-organizing time homogeneous Nash equilibria. As interactions get stronger, these stationary solutions become fully synchronized. Results are proved by an amalgam of techniques from nonlinear partial differential equations, viscosity solutions, stochastic optimal control and stochastic processes.
引用
收藏
页码:1214 / 1244
页数:31
相关论文
共 50 条
  • [41] Remarks on the complete synchronization of Kuramoto oscillators
    Ha, Seung-Yeal
    Kim, Hwa Kil
    Park, Jinyeong
    NONLINEARITY, 2015, 28 (05) : 1441 - 1462
  • [42] Synchronization of Kuramoto Oscillators with Adaptive Couplings
    Ha, Seung-Yeal
    Noh, Se Eun
    Park, Jinyeong
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 162 - 194
  • [43] On the complete synchronization of the Kuramoto phase model
    Ha, Seung-Yeal
    Ha, Taeyoung
    Kim, Jong-Ho
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (17) : 1692 - 1700
  • [44] Stability of a mean field game of production adjustment
    Wang, Yanying
    Xin, Baogui
    ASIAN JOURNAL OF CONTROL, 2024, 26 (02) : 717 - 727
  • [45] Obstacle mean-field game problem
    Gomes, Diogo A.
    Patrizi, Stefania
    INTERFACES AND FREE BOUNDARIES, 2015, 17 (01) : 55 - 68
  • [46] Strategic behaviour in the mean field Ising game
    Leonidov, A.
    Radionov, S.
    Vasilyeva, E.
    CHAOS SOLITONS & FRACTALS, 2024, 187
  • [47] Unique continuation for a mean field game system
    Imanuvilov, Oleg
    Liu, Hongyu
    Yamamoto, Masahiro
    APPLIED MATHEMATICS LETTERS, 2023, 145
  • [48] Reinforcement Learning for Mean-Field Game
    Agarwal, Mridul
    Aggarwal, Vaneet
    Ghosh, Arnob
    Tiwari, Nilay
    ALGORITHMS, 2022, 15 (03)
  • [49] A Mean Field Game of Optimal Portfolio Liquidation
    Fu, Guanxing
    Graewe, Paulwin
    Horst, Ulrich
    Popier, Alexandre
    MATHEMATICS OF OPERATIONS RESEARCH, 2021, 46 (04) : 1250 - 1281
  • [50] A mean field route choice game model
    Salhab, Rabih
    Le Ny, Jerome
    Malhame, Roland P.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1005 - 1010