Synchronization in a Kuramoto mean field game

被引:3
|
作者
Carmona, Rene [1 ]
Cormier, Quentin [2 ]
Soner, H. Mete [1 ,3 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USA
[2] Inst Polytech Paris, Inria, CMAP, Palaiseau, France
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Mean field games; Kuramoto model; synchronization; viscosity solutions; VISCOSITY SOLUTIONS; MODEL; DYNAMICS;
D O I
10.1080/03605302.2023.2264611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Kuramoto model is studied in the setting of an infinite horizon mean field game. The system is shown to exhibit both synchronization and phase transition. Incoherence below a critical value of the interaction parameter is demonstrated by the stability of the uniform distribution. Above this value, the game bifurcates and develops self-organizing time homogeneous Nash equilibria. As interactions get stronger, these stationary solutions become fully synchronized. Results are proved by an amalgam of techniques from nonlinear partial differential equations, viscosity solutions, stochastic optimal control and stochastic processes.
引用
收藏
页码:1214 / 1244
页数:31
相关论文
共 50 条
  • [31] Explosive synchronization coexists with classical synchronization in the Kuramoto model
    Danziger, Michael M.
    Moskalenko, Olga I.
    Kurkin, Semen A.
    Zhang, Xiyun
    Havlin, Shlomo
    Boccaletti, Stefano
    CHAOS, 2016, 26 (06)
  • [32] Synchronization for discrete mean-field rotators
    Jahnel, Benedikt
    Kuelske, Christof
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 26
  • [33] Averaging and Cluster Synchronization of Kuramoto Oscillators
    Kato, Rui
    Ishii, Hideaki
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1497 - 1502
  • [34] Optimal Control of Velocity and Nonlocal Interactions in the Mean-Field Kuramoto Model
    Sinigaglia, Carlo
    Braghin, Francesco
    Berman, Spring
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 290 - 295
  • [35] Statistics of synchronization times in Kuramoto oscillators
    Sinha, Abhisek
    Ghosh, Anandamohan
    EPL, 2023, 141 (05)
  • [36] The Synchronization Process in a Generalized Kuramoto Model
    Wang Jizhong
    Zhao, Xueyi
    Zhou, Jin
    Lu, Jun'an
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 7509 - 7513
  • [37] Linearization error in synchronization of Kuramoto oscillators
    Ghorban, Samira Hossein
    Baharifard, Fatemeh
    Hesaam, Bardyaa
    Zarei, Mina
    Sarbazi-Azad, Hamid
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 411
  • [38] Synchronization Properties of Trees in the Kuramoto Model
    Dekker, Anthony H.
    Taylor, Richard
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (02): : 596 - 617
  • [39] Synchronization of Kuramoto oscillators in dense networks
    Lu, Jianfeng
    Steinerberger, Stefan
    NONLINEARITY, 2020, 33 (11) : 5905 - 5918
  • [40] Cluster Synchronization in Networks of Kuramoto Oscillators
    Favaretto, Chiara
    Cenedese, Angelo
    Pasqualetti, Fabio
    IFAC PAPERSONLINE, 2017, 50 (01): : 2433 - 2438