Synchronization in a Kuramoto mean field game

被引:3
|
作者
Carmona, Rene [1 ]
Cormier, Quentin [2 ]
Soner, H. Mete [1 ,3 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USA
[2] Inst Polytech Paris, Inria, CMAP, Palaiseau, France
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Mean field games; Kuramoto model; synchronization; viscosity solutions; VISCOSITY SOLUTIONS; MODEL; DYNAMICS;
D O I
10.1080/03605302.2023.2264611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Kuramoto model is studied in the setting of an infinite horizon mean field game. The system is shown to exhibit both synchronization and phase transition. Incoherence below a critical value of the interaction parameter is demonstrated by the stability of the uniform distribution. Above this value, the game bifurcates and develops self-organizing time homogeneous Nash equilibria. As interactions get stronger, these stationary solutions become fully synchronized. Results are proved by an amalgam of techniques from nonlinear partial differential equations, viscosity solutions, stochastic optimal control and stochastic processes.
引用
收藏
页码:1214 / 1244
页数:31
相关论文
共 50 条
  • [11] THE MEAN FIELD ANALYSIS OF THE KURAMOTO MODEL ON GRAPHS I. THE MEAN FIELD EQUATION AND TRANSITION POINT FORMULAS
    Chiba, Hayato
    Medvedev, Georgi S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (01) : 131 - 155
  • [12] Synchronization and Stability for Quantum Kuramoto
    DeVille, Lee
    JOURNAL OF STATISTICAL PHYSICS, 2019, 174 (01) : 160 - 187
  • [13] On Exponential Synchronization of Kuramoto Oscillators
    Chopra, Nikhil
    Spong, Mark W.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (02) : 353 - 357
  • [14] On synchronization in Kuramoto models on spheres
    Aladin Crnkić
    Vladimir Jaćimović
    Marijan Marković
    Analysis and Mathematical Physics, 2021, 11
  • [15] Synchronization in a semiclassical Kuramoto model
    de Mendoza, Ignacio Hermoso
    Pachon, Leonardo A.
    Gomez-Gardenes, Jesus
    Zueco, David
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [16] Complete synchronization of Kuramoto oscillators
    Lunze, Jan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (42)
  • [17] On synchronization in Kuramoto models on spheres
    Crnkic, Aladin
    Jacimovic, Vladimir
    Markovic, Marijan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [18] SYNCHRONIZATION ANALYSIS OF KURAMOTO OSCILLATORS
    Dong, Jiu-Gang
    Xue, Xiaoping
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2013, 11 (02) : 465 - 480
  • [19] Synchronization and Stability for Quantum Kuramoto
    Lee DeVille
    Journal of Statistical Physics, 2019, 174 : 160 - 187
  • [20] Graphop Mean-Field Limits for Kuramoto-Type Models
    Gkogkas, Marios Antonios
    Kuehn, Christian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2022, 21 (01): : 248 - 283