Synchronization in a Kuramoto mean field game

被引:3
|
作者
Carmona, Rene [1 ]
Cormier, Quentin [2 ]
Soner, H. Mete [1 ,3 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USA
[2] Inst Polytech Paris, Inria, CMAP, Palaiseau, France
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Mean field games; Kuramoto model; synchronization; viscosity solutions; VISCOSITY SOLUTIONS; MODEL; DYNAMICS;
D O I
10.1080/03605302.2023.2264611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Kuramoto model is studied in the setting of an infinite horizon mean field game. The system is shown to exhibit both synchronization and phase transition. Incoherence below a critical value of the interaction parameter is demonstrated by the stability of the uniform distribution. Above this value, the game bifurcates and develops self-organizing time homogeneous Nash equilibria. As interactions get stronger, these stationary solutions become fully synchronized. Results are proved by an amalgam of techniques from nonlinear partial differential equations, viscosity solutions, stochastic optimal control and stochastic processes.
引用
收藏
页码:1214 / 1244
页数:31
相关论文
共 50 条
  • [21] Adaptive alternatives in the velocity control of Mean-Field Kuramoto Models
    Demetriou, Michael A.
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 319 - 324
  • [22] An Introduction to Mean Field Game Theory
    Cardaliaguet, Pierre
    Porretta, Alessio
    MEAN FIELD GAMES, 2020, 2281 : 1 - 158
  • [23] "Phase diagram" of a mean field game
    Swiecicki, Igor
    Gobron, Thierry
    Ullmo, Denis
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 442 : 467 - 485
  • [24] A Mean Field Game Inverse Problem
    Lisang Ding
    Wuchen Li
    Stanley Osher
    Wotao Yin
    Journal of Scientific Computing, 2022, 92
  • [25] A MEAN FIELD GAME OF OPTIMAL STOPPING
    Nutz, Marcel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 1206 - 1221
  • [26] Mean field model of a game for power
    Karataieva, Tatiana
    Koshmanenko, Volodymyr
    Krawczyk, Malgorzata J.
    Kulakowski, Krzysztof
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 525 : 535 - 547
  • [27] A Mean Field Game Inverse Problem
    Ding, Lisang
    Li, Wuchen
    Osher, Stanley
    Yin, Wotao
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (01)
  • [28] Desynchronization and inhibition of Kuramoto oscillators by scalar mean-field feedback
    Alessio Franci
    Antoine Chaillet
    Elena Panteley
    Françoise Lamnabhi-Lagarrigue
    Mathematics of Control, Signals, and Systems, 2012, 24 : 169 - 217
  • [29] Desynchronization and inhibition of Kuramoto oscillators by scalar mean-field feedback
    Franci, Alessio
    Chaillet, Antoine
    Panteley, Elena
    Lamnabhi-Lagarrigue, Francoise
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2012, 24 (1-2) : 169 - 217
  • [30] UNIFORM STABILITY AND MEAN-FIELD LIMIT FOR THE AUGMENTED KURAMOTO MODEL
    Ha, Seung-Yeal
    Kim, Jeongho
    Park, Jinyeong
    Zhang, Xiongtao
    NETWORKS AND HETEROGENEOUS MEDIA, 2018, 13 (02) : 297 - 322