Synchronization in a Kuramoto mean field game

被引:3
|
作者
Carmona, Rene [1 ]
Cormier, Quentin [2 ]
Soner, H. Mete [1 ,3 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USA
[2] Inst Polytech Paris, Inria, CMAP, Palaiseau, France
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
Mean field games; Kuramoto model; synchronization; viscosity solutions; VISCOSITY SOLUTIONS; MODEL; DYNAMICS;
D O I
10.1080/03605302.2023.2264611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical Kuramoto model is studied in the setting of an infinite horizon mean field game. The system is shown to exhibit both synchronization and phase transition. Incoherence below a critical value of the interaction parameter is demonstrated by the stability of the uniform distribution. Above this value, the game bifurcates and develops self-organizing time homogeneous Nash equilibria. As interactions get stronger, these stationary solutions become fully synchronized. Results are proved by an amalgam of techniques from nonlinear partial differential equations, viscosity solutions, stochastic optimal control and stochastic processes.
引用
收藏
页码:1214 / 1244
页数:31
相关论文
共 50 条
  • [1] ON THE COMPLETE PHASE SYNCHRONIZATION FOR THE KURAMOTO MODEL IN THE MEAN-FIELD LIMIT
    Benedetto, Dario
    Caglioti, Emanuele
    Montemagno, Umberto
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (07) : 1775 - 1786
  • [2] Graphop mean-field limits and synchronization for the stochastic Kuramoto model
    Gkogkas, Marios Antonios
    Juettner, Benjamin
    Kuehn, Christian
    Martens, Erik Andreas
    CHAOS, 2022, 32 (11)
  • [3] Jet Lag Recovery: Synchronization of Circadian Oscillators as a Mean Field Game
    Carmona, Rene
    Graves, Christy V.
    DYNAMIC GAMES AND APPLICATIONS, 2020, 10 (01) : 79 - 99
  • [4] Jet Lag Recovery: Synchronization of Circadian Oscillators as a Mean Field Game
    René Carmona
    Christy V. Graves
    Dynamic Games and Applications, 2020, 10 : 79 - 99
  • [5] Metastability in the Hamiltonian mean field model and Kuramoto model
    Pluchino, A
    Rapisarda, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) : 184 - 189
  • [6] Synchronization in the random-field Kuramoto model on complex networks
    Lopes, M. A.
    Lopes, E. M.
    Yoon, S.
    Mendes, J. F. F.
    Goltsev, A. V.
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [7] On synchronization of Kuramoto oscillators
    Chopra, Nikhil
    Spong, Mark W.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 3916 - 3922
  • [8] Dynamical Aspects of Mean Field Plane Rotators and the Kuramoto Model
    Lorenzo Bertini
    Giambattista Giacomin
    Khashayar Pakdaman
    Journal of Statistical Physics, 2010, 138 : 270 - 290
  • [9] Dynamical Aspects of Mean Field Plane Rotators and the Kuramoto Model
    Bertini, Lorenzo
    Giacomin, Giambattista
    Pakdaman, Khashayar
    JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) : 270 - 290
  • [10] Mean Field Control and Mean Field Game Models with Several Populations
    Bensoussan, Alain
    Huang, Tao
    Lauriere, Mathieu
    MINIMAX THEORY AND ITS APPLICATIONS, 2018, 3 (02): : 173 - 209