Modeling fragment counts improves single-cell ATAC-seq analysis

被引:2
|
作者
Martens, Laura D. [1 ,2 ,3 ]
Fischer, David S. [2 ,4 ]
Yepez, Vicente A. [1 ]
Theis, Fabian J. [1 ,2 ,3 ,4 ]
Gagneur, Julien [1 ,2 ,3 ,5 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Garching, Germany
[2] Helmholtz Ctr Munich, Computat Hlth Ctr, Neuherberg, Germany
[3] Munich Sch Data Sci MUDS, Helmholtz Assoc, Munich, Germany
[4] Tech Univ Munich, TUM Sch Life Sci Weihenstephan, Freising Weihenstephan, Germany
[5] Tech Univ Munich, Inst Human Genet, Sch Med, Munich, Germany
关键词
ACCESSIBILITY;
D O I
10.1038/s41592-023-02112-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell ATAC sequencing coverage in regulatory regions is typically binarized as an indicator of open chromatin. Here we show that binarization is an unnecessary step that neither improves goodness of fit, clustering, cell type identification nor batch integration. Fragment counts, but not read counts, should instead be modeled, which preserves quantitative regulatory information. These results have immediate implications for single-cell ATAC sequencing analysis. This paper proposes quantitative modeling of single-cell ATAC-seq data, which improves various downstream analyses.
引用
收藏
页码:28 / 31
页数:21
相关论文
共 50 条
  • [41] Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Peripheral Mononuclear Cells in Patients With Ankylosing Spondylitis
    Xu, Huixuan
    Yu, Haiyan
    Liu, Lixiong
    Wu, Hongwei
    Zhang, Cantong
    Cai, Wanxia
    Hong, Xiaoping
    Liu, Dongzhou
    Tang, Donge
    Dai, Yong
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [42] Fundamental and practical approaches for single-cell ATAC-seq analysis (vol 3, pg 212, 2022)
    Shi, Peiyu
    Nie, Yage
    Yang, Jiawen
    Zhang, Weixing
    Tang, Zhongjie
    Xu, Jin
    ABIOTECH, 2024, 5 (02) : 239 - 246
  • [43] Incorporating network diffusion and peak location information for better single-cell ATAC-seq data analysis
    Yu, Jiating
    Leng, Jiacheng
    Hou, Zhichao
    Sun, Duanchen
    Wu, Ling-Yun
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [44] A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder
    Wang, Zixuan
    Zhang, Yongqing
    Yu, Yun
    Zhang, Junming
    Liu, Yuhang
    Zou, Quan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [45] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Ramakrishnan, Akshaya
    Symeonidi, Aikaterini
    Hanel, Patrick
    Schmid, Katharina T.
    Richter, Maria L.
    Schubert, Michael
    Colome-Tatche, Maria
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [46] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Li, Zhijian
    Kuppe, Christoph
    Ziegler, Susanne
    Cheng, Mingbo
    Kabgani, Nazanin
    Menzel, Sylvia
    Zenke, Martin
    Kramann, Rafael
    Costa, Ivan G.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [47] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Zhijian Li
    Christoph Kuppe
    Susanne Ziegler
    Mingbo Cheng
    Nazanin Kabgani
    Sylvia Menzel
    Martin Zenke
    Rafael Kramann
    Ivan G. Costa
    Nature Communications, 12
  • [48] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Akshaya Ramakrishnan
    Aikaterini Symeonidi
    Patrick Hanel
    Katharina T. Schmid
    Maria L. Richter
    Michael Schubert
    Maria Colomé-Tatché
    Nature Communications, 14
  • [49] Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads
    De Rop, Florian, V
    Ismail, Joy N.
    Bravo Gonzalez-Blas, Carmen
    Hulselmans, Gert J.
    Flerin, Christopher Campbell
    Janssens, Jasper
    Theunis, Koen
    Christiaens, Valerie M.
    Wouters, Jasper
    Marcassa, Gabriele
    de Wit, Joris
    Poovathingal, Suresh
    Aerts, Stein
    ELIFE, 2022, 11
  • [50] Integrative Analysis of Single-Cell RNA-Seq and ATAC-Seq Data across Treatment Time Points in Pediatric AML
    Wei, Lisa
    Trinh, Diane
    Ries, Rhonda E.
    Jin, Dan
    Corbett, Richard D.
    Smith, Jenny L.
    Furlan, Scott N.
    Meshinchi, Soheil
    Marra, Marco A.
    BLOOD, 2020, 136