epiAneufinder identifies copy number alterations from single-cell ATAC-seq data

被引:4
|
作者
Ramakrishnan, Akshaya [1 ]
Symeonidi, Aikaterini [1 ,2 ]
Hanel, Patrick [1 ,2 ]
Schmid, Katharina T. [2 ]
Richter, Maria L. [2 ]
Schubert, Michael [3 ]
Colome-Tatche, Maria [1 ,2 ]
机构
[1] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Computat Biol, Neuherberg, Germany
[2] Ludwig Maximilians Univ Munchen, Fac Med, Biomed Ctr BMC, Physiol Chem, Martinsried, Germany
[3] Netherlands Canc Inst, Oncode Inst, Div Cell Biol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
关键词
ANEUPLOIDY PARADOX; CHROMATIN;
D O I
10.1038/s41467-023-41076-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell open chromatin profiling via scATAC-seq has become a mainstream measurement of open chromatin in single-cells. Here we present epiAneufinder, an algorithm that exploits the read count information from scATAC-seq data to extract genome-wide copy number alterations (CNAs) for individual cells, allowing the study of CNA heterogeneity present in a sample at the single-cell level. Using different cancer scATAC-seq datasets, we show that epiAneufinder can identify intratumor clonal heterogeneity in populations of single cells based on their CNA profiles. We demonstrate that these profiles are concordant with the ones inferred from single-cell whole genome sequencing data for the same samples. EpiAneufinder allows the inference of single-cell CNA information from scATAC-seq data, without the need of additional experiments, unlocking a layer of genomic variation which is otherwise unexplored. 'Here the authors present epiAneufinder, an algorithm for the identification of single-cell copy number alterations from scATAC-seq data, and explore the clonal heterogeneity in cell populations.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Akshaya Ramakrishnan
    Aikaterini Symeonidi
    Patrick Hanel
    Katharina T. Schmid
    Maria L. Richter
    Michael Schubert
    Maria Colomé-Tatché
    Nature Communications, 14
  • [2] Decoding cell replicational age from single-cell ATAC-seq data
    Xiao, Yu
    Zhang, Yi
    NATURE BIOTECHNOLOGY, 2024,
  • [3] Single-cell ATAC-seq: strength in numbers
    Pott, Sebastian
    Lieb, Jason D.
    GENOME BIOLOGY, 2015, 16
  • [4] Single-cell ATAC-seq: strength in numbers
    Sebastian Pott
    Jason D. Lieb
    Genome Biology, 16
  • [5] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Chen, Huidong
    Lareau, Caleb A.
    Andreani, Tommaso
    Vinyard, Michael E.
    Garcia, Sara P.
    Clement, Kendell
    Andrade-Navarro, Miguel
    Buenrostro, Jason D.
    Pinello, Luca
    GENOME BIOLOGY, 2019, 20 (01)
  • [6] Modeling Single-Cell ATAC-Seq Data Based on Contrastive Learning
    Lan, Wei
    Zhou, Weihao
    Chen, Qingfeng
    Zheng, Ruiqing
    Pan, Yi
    Chen, Yi-Ping Phoebe
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 473 - 482
  • [7] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Huidong Chen
    Caleb Lareau
    Tommaso Andreani
    Michael E. Vinyard
    Sara P. Garcia
    Kendell Clement
    Miguel A. Andrade-Navarro
    Jason D. Buenrostro
    Luca Pinello
    Genome Biology, 20
  • [8] simATAC: a single-cell ATAC-seq simulation framework
    Zeinab Navidi
    Lin Zhang
    Bo Wang
    Genome Biology, 22
  • [9] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Li, Zhijian
    Kuppe, Christoph
    Ziegler, Susanne
    Cheng, Mingbo
    Kabgani, Nazanin
    Menzel, Sylvia
    Zenke, Martin
    Kramann, Rafael
    Costa, Ivan G.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] simATAC: a single-cell ATAC-seq simulation framework
    Navidi, Zeinab
    Zhang, Lin
    Wang, Bo
    GENOME BIOLOGY, 2021, 22 (01)