Modeling Single-Cell ATAC-Seq Data Based on Contrastive Learning

被引:0
|
作者
Lan, Wei [1 ]
Zhou, Weihao [1 ]
Chen, Qingfeng [1 ]
Zheng, Ruiqing [2 ]
Pan, Yi [3 ]
Chen, Yi-Ping Phoebe [4 ]
机构
[1] Guangxi Univ, Sch Comp Elect & Informat, Guangxi Key Lab Multimedia Commun & Network Techn, Nanning 530004, Guangxi, Peoples R China
[2] Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha 410083, Hunan, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Sch Comp Sci & Control Engn, Shenzhen 518055, Peoples R China
[4] La Trobe Univ, Dept Comp Sci & Informat Technol, Melbourne, Vic 3086, Australia
基金
中国国家自然科学基金;
关键词
scATAC-seq; contrastive learning; convolution neural network;
D O I
10.1007/978-981-97-5128-0_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advance of single-cell assay for transposase-accessible chromatin sequencing technologies (scATAC-seq), it is able to assess the accessibility of single-cell chromatin and gain insights into the process of gene regulation. However, the scATAC data contains distinct characteristics such as sparsity and high dimensionality, which often pose challenges in the downstream analysis. In this paper, we introduce a contrastive learning method (SCCL) for modeling scATAC data. The SCCL designs two distinct encoders to extract local and global features from the original data, respectively. In addition, an improved contrastive learning method is utilized to reduce the redundancy of the feature. Further, the local and global features are fused to obtain reliable features. Finally, the decode is used to generate binary accessibility. We conduct the experiment on various real datasets, and the results demonstrate its superiority over other state-of-the-art methods in cell cluster and transcription factor activity inference.
引用
下载
收藏
页码:473 / 482
页数:10
相关论文
共 50 条
  • [1] Single-cell ATAC-seq: strength in numbers
    Pott, Sebastian
    Lieb, Jason D.
    GENOME BIOLOGY, 2015, 16
  • [2] Single-cell ATAC-seq: strength in numbers
    Sebastian Pott
    Jason D. Lieb
    Genome Biology, 16
  • [3] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Gonzalez-Blas, Carmen Bravo
    Minnoye, Liesbeth
    Papasokrati, Dafni
    Aibar, Sara
    Hulselmans, Gert
    Christiaens, Valerie
    Davie, Kristofer
    Wouters, Jasper
    Aerts, Stein
    NATURE METHODS, 2019, 16 (05) : 397 - +
  • [4] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Carmen Bravo González-Blas
    Liesbeth Minnoye
    Dafni Papasokrati
    Sara Aibar
    Gert Hulselmans
    Valerie Christiaens
    Kristofer Davie
    Jasper Wouters
    Stein Aerts
    Nature Methods, 2019, 16 : 397 - 400
  • [5] Modeling fragment counts improves single-cell ATAC-seq analysis
    Laura D. Martens
    David S. Fischer
    Vicente A. Yépez
    Fabian J. Theis
    Julien Gagneur
    Nature Methods, 2024, 21 : 28 - 31
  • [6] Modeling fragment counts improves single-cell ATAC-seq analysis
    Martens, Laura D.
    Fischer, David S.
    Yepez, Vicente A.
    Theis, Fabian J.
    Gagneur, Julien
    NATURE METHODS, 2024, 21 (01) : 28 - 31
  • [7] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Chen, Huidong
    Lareau, Caleb A.
    Andreani, Tommaso
    Vinyard, Michael E.
    Garcia, Sara P.
    Clement, Kendell
    Andrade-Navarro, Miguel
    Buenrostro, Jason D.
    Pinello, Luca
    GENOME BIOLOGY, 2019, 20 (01)
  • [8] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Huidong Chen
    Caleb Lareau
    Tommaso Andreani
    Michael E. Vinyard
    Sara P. Garcia
    Kendell Clement
    Miguel A. Andrade-Navarro
    Jason D. Buenrostro
    Luca Pinello
    Genome Biology, 20
  • [9] Decoding cell replicational age from single-cell ATAC-seq data
    Xiao, Yu
    Zhang, Yi
    NATURE BIOTECHNOLOGY, 2024,
  • [10] simATAC: a single-cell ATAC-seq simulation framework
    Zeinab Navidi
    Lin Zhang
    Bo Wang
    Genome Biology, 22