Modeling Single-Cell ATAC-Seq Data Based on Contrastive Learning

被引:0
|
作者
Lan, Wei [1 ]
Zhou, Weihao [1 ]
Chen, Qingfeng [1 ]
Zheng, Ruiqing [2 ]
Pan, Yi [3 ]
Chen, Yi-Ping Phoebe [4 ]
机构
[1] Guangxi Univ, Sch Comp Elect & Informat, Guangxi Key Lab Multimedia Commun & Network Techn, Nanning 530004, Guangxi, Peoples R China
[2] Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha 410083, Hunan, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Sch Comp Sci & Control Engn, Shenzhen 518055, Peoples R China
[4] La Trobe Univ, Dept Comp Sci & Informat Technol, Melbourne, Vic 3086, Australia
基金
中国国家自然科学基金;
关键词
scATAC-seq; contrastive learning; convolution neural network;
D O I
10.1007/978-981-97-5128-0_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advance of single-cell assay for transposase-accessible chromatin sequencing technologies (scATAC-seq), it is able to assess the accessibility of single-cell chromatin and gain insights into the process of gene regulation. However, the scATAC data contains distinct characteristics such as sparsity and high dimensionality, which often pose challenges in the downstream analysis. In this paper, we introduce a contrastive learning method (SCCL) for modeling scATAC data. The SCCL designs two distinct encoders to extract local and global features from the original data, respectively. In addition, an improved contrastive learning method is utilized to reduce the redundancy of the feature. Further, the local and global features are fused to obtain reliable features. Finally, the decode is used to generate binary accessibility. We conduct the experiment on various real datasets, and the results demonstrate its superiority over other state-of-the-art methods in cell cluster and transcription factor activity inference.
引用
下载
收藏
页码:473 / 482
页数:10
相关论文
共 50 条
  • [31] Evaluation of classification in single cell atac-seq data with machine learning methods
    Hongzhe Guo
    Zhongbo Yang
    Tao Jiang
    Shiqi Liu
    Yadong Wang
    Zhe Cui
    BMC Bioinformatics, 23
  • [32] A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder
    Wang, Zixuan
    Zhang, Yongqing
    Yu, Yun
    Zhang, Junming
    Liu, Yuhang
    Zou, Quan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [33] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Li, Zhijian
    Kuppe, Christoph
    Ziegler, Susanne
    Cheng, Mingbo
    Kabgani, Nazanin
    Menzel, Sylvia
    Zenke, Martin
    Kramann, Rafael
    Costa, Ivan G.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [34] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Zhijian Li
    Christoph Kuppe
    Susanne Ziegler
    Mingbo Cheng
    Nazanin Kabgani
    Sylvia Menzel
    Martin Zenke
    Rafael Kramann
    Ivan G. Costa
    Nature Communications, 12
  • [35] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Akshaya Ramakrishnan
    Aikaterini Symeonidi
    Patrick Hanel
    Katharina T. Schmid
    Maria L. Richter
    Michael Schubert
    Maria Colomé-Tatché
    Nature Communications, 14
  • [36] Integrative Single-Cell RNA-Seq and Single-Cell ATAC-Seq Analysis of Human Plasma Cell Differentiation
    Alaterre, Elina
    Ovejero, Sara
    Espeli, Marion
    Fest, Thierry
    Cogne, Michel
    Milpied, Pierre
    Cavalli, Giacomo
    Moreaux, Jerome
    BLOOD, 2023, 142
  • [37] Translator: A Transfer Learning Approach to Facilitate Single-Cell ATAC-Seq Data Analysis from Reference Dataset
    Xu, Siwei
    Skarica, Mario
    Hwang, Ahyeon
    Dai, Yi
    Lee, Cheyu
    Girgenti, Matthew J.
    Zhang, Jing
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (07) : 619 - 633
  • [38] Classifying cells with Scasat, a single-cell ATAC-seq analysis tool
    Baker, Syed Murtuza
    Rogerson, Connor
    Hayes, Andrew
    Sharrocks, Andrew D.
    Rattray, Magnus
    NUCLEIC ACIDS RESEARCH, 2019, 47 (02)
  • [39] Comprehensive analysis of single cell ATAC-seq data with SnapATAC
    Fang, Rongxin
    Preissl, Sebastian
    Li, Yang
    Hou, Xiaomeng
    Lucero, Jacinta
    Wang, Xinxin
    Motamedi, Amir
    Shiau, Andrew K.
    Zhou, Xinzhu
    Xie, Fangming
    Mukamel, Eran A.
    Zhang, Kai
    Zhang, Yanxiao
    Behrens, M. Margarita
    Ecker, Joseph R.
    Ren, Bing
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [40] Comprehensive analysis of single cell ATAC-seq data with SnapATAC
    Rongxin Fang
    Sebastian Preissl
    Yang Li
    Xiaomeng Hou
    Jacinta Lucero
    Xinxin Wang
    Amir Motamedi
    Andrew K. Shiau
    Xinzhu Zhou
    Fangming Xie
    Eran A. Mukamel
    Kai Zhang
    Yanxiao Zhang
    M. Margarita Behrens
    Joseph R. Ecker
    Bing Ren
    Nature Communications, 12