Modeling Single-Cell ATAC-Seq Data Based on Contrastive Learning

被引:0
|
作者
Lan, Wei [1 ]
Zhou, Weihao [1 ]
Chen, Qingfeng [1 ]
Zheng, Ruiqing [2 ]
Pan, Yi [3 ]
Chen, Yi-Ping Phoebe [4 ]
机构
[1] Guangxi Univ, Sch Comp Elect & Informat, Guangxi Key Lab Multimedia Commun & Network Techn, Nanning 530004, Guangxi, Peoples R China
[2] Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha 410083, Hunan, Peoples R China
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Sch Comp Sci & Control Engn, Shenzhen 518055, Peoples R China
[4] La Trobe Univ, Dept Comp Sci & Informat Technol, Melbourne, Vic 3086, Australia
基金
中国国家自然科学基金;
关键词
scATAC-seq; contrastive learning; convolution neural network;
D O I
10.1007/978-981-97-5128-0_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the advance of single-cell assay for transposase-accessible chromatin sequencing technologies (scATAC-seq), it is able to assess the accessibility of single-cell chromatin and gain insights into the process of gene regulation. However, the scATAC data contains distinct characteristics such as sparsity and high dimensionality, which often pose challenges in the downstream analysis. In this paper, we introduce a contrastive learning method (SCCL) for modeling scATAC data. The SCCL designs two distinct encoders to extract local and global features from the original data, respectively. In addition, an improved contrastive learning method is utilized to reduce the redundancy of the feature. Further, the local and global features are fused to obtain reliable features. Finally, the decode is used to generate binary accessibility. We conduct the experiment on various real datasets, and the results demonstrate its superiority over other state-of-the-art methods in cell cluster and transcription factor activity inference.
引用
下载
收藏
页码:473 / 482
页数:10
相关论文
共 50 条
  • [41] Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data
    Lee M.Y.Y.
    Kaestner K.H.
    Li M.
    Genome Biology, 24 (1)
  • [42] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Duan, Hongyu
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Li, Yan
    Liu, Xikui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 917 - 928
  • [43] Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq
    Raevskiy, Mikhail
    Yanvarev, Vladislav
    Jung, Sascha
    Del Sol, Antonio
    Medvedeva, Yulia A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (07)
  • [44] ATACAmp: a tool for detecting ecDNA/HSRs from bulk and single-cell ATAC-seq data
    Hansen Cheng
    Wenhao Ma
    Kun Wang
    Han Chu
    Guangchao Bao
    Yu Liao
    Yawen Yuan
    Yixiong Gou
    Liting Dong
    Jian Yang
    Haoyang Cai
    BMC Genomics, 24
  • [45] Unsupervised contrastive peak caller for ATAC-seq
    Vu, Ha T. H.
    Zhang, Yudi
    Tuteja, Geetu
    Dorman, Karin S.
    GENOME RESEARCH, 2023, 33 (07) : 1133 - 1144
  • [46] ATACAmp: a tool for detecting ecDNA/HSRs from bulk and single-cell ATAC-seq data
    Cheng, Hansen
    Ma, Wenhao
    Wang, Kun
    Chu, Han
    Bao, Guangchao
    Liao, Yu
    Yuan, Yawen
    Gou, Yixiong
    Dong, Liting
    Yang, Jian
    Cai, Haoyang
    BMC GENOMICS, 2023, 24 (01)
  • [47] SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration
    Cao, Yingxin
    Fu, Laiyi
    Wu, Jie
    Peng, Qinke
    Nie, Qing
    Zhang, Jing
    Xie, Xiaohui
    BIOINFORMATICS, 2021, 37 : I317 - I326
  • [48] Scalable and unbiased sequence-informed embedding of single-cell ATAC-seq data with CellSpace
    Tayyebi, Zakieh
    Pine, Allison R.
    Leslie, Christina S.
    NATURE METHODS, 2024, 21 (06) : 1014 - 1022
  • [49] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Hongyu Duan
    Feng Li
    Junliang Shang
    Jinxing Liu
    Yan Li
    Xikui Liu
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 917 - 928
  • [50] Matrix factorization and transfer learning uncover regulatory biology across multiple single-cell ATAC-seq data sets
    Erbe, Rossin
    Kessler, Michael D.
    Favorov, Alexander, V
    Easwaran, Hariharan
    Gaykalova, Daria A.
    Fertig, Elana J.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (12) : E68 - E68