Modeling fragment counts improves single-cell ATAC-seq analysis

被引:2
|
作者
Martens, Laura D. [1 ,2 ,3 ]
Fischer, David S. [2 ,4 ]
Yepez, Vicente A. [1 ]
Theis, Fabian J. [1 ,2 ,3 ,4 ]
Gagneur, Julien [1 ,2 ,3 ,5 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Garching, Germany
[2] Helmholtz Ctr Munich, Computat Hlth Ctr, Neuherberg, Germany
[3] Munich Sch Data Sci MUDS, Helmholtz Assoc, Munich, Germany
[4] Tech Univ Munich, TUM Sch Life Sci Weihenstephan, Freising Weihenstephan, Germany
[5] Tech Univ Munich, Inst Human Genet, Sch Med, Munich, Germany
关键词
ACCESSIBILITY;
D O I
10.1038/s41592-023-02112-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell ATAC sequencing coverage in regulatory regions is typically binarized as an indicator of open chromatin. Here we show that binarization is an unnecessary step that neither improves goodness of fit, clustering, cell type identification nor batch integration. Fragment counts, but not read counts, should instead be modeled, which preserves quantitative regulatory information. These results have immediate implications for single-cell ATAC sequencing analysis. This paper proposes quantitative modeling of single-cell ATAC-seq data, which improves various downstream analyses.
引用
收藏
页码:28 / 31
页数:21
相关论文
共 50 条
  • [1] Modeling fragment counts improves single-cell ATAC-seq analysis
    Laura D. Martens
    David S. Fischer
    Vicente A. Yépez
    Fabian J. Theis
    Julien Gagneur
    Nature Methods, 2024, 21 : 28 - 31
  • [2] Single-cell ATAC-seq: strength in numbers
    Pott, Sebastian
    Lieb, Jason D.
    GENOME BIOLOGY, 2015, 16
  • [3] Single-cell ATAC-seq: strength in numbers
    Sebastian Pott
    Jason D. Lieb
    Genome Biology, 16
  • [4] Fundamental and practical approaches for single-cell ATAC-seq analysis
    Shi, Peiyu
    Nie, Yage
    Yang, Jiawen
    Zhang, Weixing
    Tang, Zhongjie
    Xu, Jin
    ABIOTECH, 2022, 3 (03) : 212 - 223
  • [5] Fundamental and practical approaches for single-cell ATAC-seq analysis
    Peiyu Shi
    Yage Nie
    Jiawen Yang
    Weixing Zhang
    Zhongjie Tang
    Jin Xu
    aBIOTECH, 2022, 3 : 212 - 223
  • [6] Modeling Single-Cell ATAC-Seq Data Based on Contrastive Learning
    Lan, Wei
    Zhou, Weihao
    Chen, Qingfeng
    Zheng, Ruiqing
    Pan, Yi
    Chen, Yi-Ping Phoebe
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 473 - 482
  • [7] simATAC: a single-cell ATAC-seq simulation framework
    Zeinab Navidi
    Lin Zhang
    Bo Wang
    Genome Biology, 22
  • [8] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Chen, Huidong
    Lareau, Caleb A.
    Andreani, Tommaso
    Vinyard, Michael E.
    Garcia, Sara P.
    Clement, Kendell
    Andrade-Navarro, Miguel
    Buenrostro, Jason D.
    Pinello, Luca
    GENOME BIOLOGY, 2019, 20 (01)
  • [9] simATAC: a single-cell ATAC-seq simulation framework
    Navidi, Zeinab
    Zhang, Lin
    Wang, Bo
    GENOME BIOLOGY, 2021, 22 (01)
  • [10] Assessment of computational methods for the analysis of single-cell ATAC-seq data
    Huidong Chen
    Caleb Lareau
    Tommaso Andreani
    Michael E. Vinyard
    Sara P. Garcia
    Kendell Clement
    Miguel A. Andrade-Navarro
    Jason D. Buenrostro
    Luca Pinello
    Genome Biology, 20