Modeling fragment counts improves single-cell ATAC-seq analysis

被引:2
|
作者
Martens, Laura D. [1 ,2 ,3 ]
Fischer, David S. [2 ,4 ]
Yepez, Vicente A. [1 ]
Theis, Fabian J. [1 ,2 ,3 ,4 ]
Gagneur, Julien [1 ,2 ,3 ,5 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Garching, Germany
[2] Helmholtz Ctr Munich, Computat Hlth Ctr, Neuherberg, Germany
[3] Munich Sch Data Sci MUDS, Helmholtz Assoc, Munich, Germany
[4] Tech Univ Munich, TUM Sch Life Sci Weihenstephan, Freising Weihenstephan, Germany
[5] Tech Univ Munich, Inst Human Genet, Sch Med, Munich, Germany
关键词
ACCESSIBILITY;
D O I
10.1038/s41592-023-02112-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell ATAC sequencing coverage in regulatory regions is typically binarized as an indicator of open chromatin. Here we show that binarization is an unnecessary step that neither improves goodness of fit, clustering, cell type identification nor batch integration. Fragment counts, but not read counts, should instead be modeled, which preserves quantitative regulatory information. These results have immediate implications for single-cell ATAC sequencing analysis. This paper proposes quantitative modeling of single-cell ATAC-seq data, which improves various downstream analyses.
引用
收藏
页码:28 / 31
页数:21
相关论文
共 50 条
  • [31] Benchmarking automated cell type annotation tools for single-cell ATAC-seq data
    Wang, Yuge
    Sun, Xingzhi
    Zhao, Hongyu
    FRONTIERS IN GENETICS, 2022, 13
  • [32] Benchmarking Algorithms for Gene Set Scoring of Single-cell ATAC-seq Data
    Wang, Xi
    Lian, Qiwei
    Dong, Haoyu
    Xu, Shuo
    Su, Yaru
    Wu, Xiaohui
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2024, 22 (02)
  • [33] scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks
    Yuan, Han
    Kelley, David R.
    NATURE METHODS, 2022, 19 (09) : 1088 - +
  • [34] scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks
    Han Yuan
    David R. Kelley
    Nature Methods, 2022, 19 : 1088 - 1096
  • [35] Discovering single nucleotide variants and indels from bulk and single-cell ATAC-seq
    Massarat, Arya R.
    Sen, Arko
    Jaureguy, Jeff
    Tyndale, Selene T.
    Fu, Yi
    Erikson, Galina
    McVicker, Graham
    NUCLEIC ACIDS RESEARCH, 2021, 49 (14) : 7986 - 7994
  • [36] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Yunfan Li
    Dan Zhang
    Mouxing Yang
    Dezhong Peng
    Jun Yu
    Yu Liu
    Jiancheng Lv
    Lu Chen
    Xi Peng
    Nature Communications, 14
  • [37] Single-cell ATAC-seq analysis of mouse, non-human primate and human retina
    Xi, Zhouhuan
    Johnson, Molly
    Ozturk, Bilge Esin
    Turunc, Serhan
    Stauffer, William
    Byrne, Leah
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [38] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Hongyu Duan
    Feng Li
    Junliang Shang
    Jinxing Liu
    Yan Li
    Xikui Liu
    Interdisciplinary Sciences: Computational Life Sciences, 2022, 14 : 917 - 928
  • [39] Assessment of intra-tumor heterogeneity in breast cancer by single-cell ATAC-seq analysis
    Kumegawa, Kohei
    Takahashi, Yoko
    Saeki, Sumito
    Yang, Liying
    Otsuji, Kazutoshi
    Nakadai, Tomoyoshi
    Ohno, Shinji
    Ueno, Takayuki
    Maruyama, Reo
    CANCER SCIENCE, 2021, 112 : 447 - 447
  • [40] Network diffusion for scalable embedding of massive single-cell ATAC-seq data
    Dong, Kangning
    Zhang, Shihua
    SCIENCE BULLETIN, 2021, 66 (22) : 2271 - 2276