Modeling fragment counts improves single-cell ATAC-seq analysis

被引:2
|
作者
Martens, Laura D. [1 ,2 ,3 ]
Fischer, David S. [2 ,4 ]
Yepez, Vicente A. [1 ]
Theis, Fabian J. [1 ,2 ,3 ,4 ]
Gagneur, Julien [1 ,2 ,3 ,5 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Garching, Germany
[2] Helmholtz Ctr Munich, Computat Hlth Ctr, Neuherberg, Germany
[3] Munich Sch Data Sci MUDS, Helmholtz Assoc, Munich, Germany
[4] Tech Univ Munich, TUM Sch Life Sci Weihenstephan, Freising Weihenstephan, Germany
[5] Tech Univ Munich, Inst Human Genet, Sch Med, Munich, Germany
关键词
ACCESSIBILITY;
D O I
10.1038/s41592-023-02112-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell ATAC sequencing coverage in regulatory regions is typically binarized as an indicator of open chromatin. Here we show that binarization is an unnecessary step that neither improves goodness of fit, clustering, cell type identification nor batch integration. Fragment counts, but not read counts, should instead be modeled, which preserves quantitative regulatory information. These results have immediate implications for single-cell ATAC sequencing analysis. This paper proposes quantitative modeling of single-cell ATAC-seq data, which improves various downstream analyses.
引用
收藏
页码:28 / 31
页数:21
相关论文
共 50 条
  • [21] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Carmen Bravo González-Blas
    Liesbeth Minnoye
    Dafni Papasokrati
    Sara Aibar
    Gert Hulselmans
    Valerie Christiaens
    Kristofer Davie
    Jasper Wouters
    Stein Aerts
    Nature Methods, 2019, 16 : 397 - 400
  • [22] SCALE method for single-cell ATAC-seq analysis via latent feature extraction
    Lei Xiong
    Kui Xu
    Kang Tian
    Yanqiu Shao
    Lei Tang
    Ge Gao
    Michael Zhang
    Tao Jiang
    Qiangfeng Cliff Zhang
    Nature Communications, 10
  • [23] SCALE method for single-cell ATAC-seq analysis via latent feature extraction
    Xiong, Lei
    Xu, Kui
    Tian, Kang
    Shao, Yanqiu
    Tang, Lei
    Gao, Ge
    Zhang, Michael
    Jiang, Tao
    Zhang, Qiangfeng Cliff
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [24] Decoding cell replicational age from single-cell ATAC-seq data
    Xiao, Yu
    Zhang, Yi
    NATURE BIOTECHNOLOGY, 2024,
  • [25] Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mouse Corneal Epithelial Cells
    Lu, Zhao-Jing
    Ye, Jin-Guo
    Wang, Dong-Liang
    Li, Meng-Ke
    Zhang, Qi-Kai
    Liu, Zhong
    Huang, Yan-Jing
    Pan, Cai-Neng
    Lin, Yu-Heng
    Shi, Zhuo-Xing
    Zheng, Ying-Feng
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (03)
  • [26] Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq
    Raevskiy, Mikhail
    Yanvarev, Vladislav
    Jung, Sascha
    Del Sol, Antonio
    Medvedeva, Yulia A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (07)
  • [27] Comprehensive analysis of single cell ATAC-seq data with SnapATAC
    Fang, Rongxin
    Preissl, Sebastian
    Li, Yang
    Hou, Xiaomeng
    Lucero, Jacinta
    Wang, Xinxin
    Motamedi, Amir
    Shiau, Andrew K.
    Zhou, Xinzhu
    Xie, Fangming
    Mukamel, Eran A.
    Zhang, Kai
    Zhang, Yanxiao
    Behrens, M. Margarita
    Ecker, Joseph R.
    Ren, Bing
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [28] Comprehensive analysis of single cell ATAC-seq data with SnapATAC
    Rongxin Fang
    Sebastian Preissl
    Yang Li
    Xiaomeng Hou
    Jacinta Lucero
    Xinxin Wang
    Amir Motamedi
    Andrew K. Shiau
    Xinzhu Zhou
    Fangming Xie
    Eran A. Mukamel
    Kai Zhang
    Yanxiao Zhang
    M. Margarita Behrens
    Joseph R. Ecker
    Bing Ren
    Nature Communications, 12
  • [29] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Duan, Hongyu
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Li, Yan
    Liu, Xikui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 917 - 928
  • [30] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Li, Yunfan
    Zhang, Dan
    Yang, Mouxing
    Peng, Dezhong
    Yu, Jun
    Liu, Yu
    Lv, Jiancheng
    Chen, Lu
    Peng, Xi
    NATURE COMMUNICATIONS, 2023, 14 (01)