Cauchyian Motion: A Spatio-Temporal Scale Invariant Mobile Trajectory Model

被引:0
|
作者
Tsai, I-Fei [1 ]
机构
[1] Hon Hai Res Inst, New Taipei, Taiwan
关键词
Mobility Modeling; Circular Statistics; Exploratory Data Analysis; Goodness of Fit; Time Series;
D O I
10.1109/VTC2023-Fall60731.2023.10333680
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human mobility is a complex phenomenon driven by spatial interactions and temporal dynamics. The study of mobility patterns has far-reaching implications, from designing efficient transportation systems to responding effectively to epidemics. In this paper, a univariate mobility model is developed using circular statistics to abstract human motion. The validity of this model is confirmed through the analysis of a real-world GPS dataset. The wrapped Cauchy distribution, which best-fits the turning angles and detrended bearings, is utilized to extract the distinctive features of straight-oriented shortest-path-first route. The proposed modeling aims to capture the inherent cyclic nature of mobile trajectories. By adjusting the scale parameter, the model can characterize mobility patterns at different spatial and temporal resolutions, thus facilitating accurate analysis, simulation, and prediction of mobile trajectories.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Spatio-temporal model for image motion
    Park, E
    Wohn, K
    [J]. ELECTRONICS LETTERS, 1998, 34 (16) : 1574 - 1575
  • [2] Spatial integration of spatio-temporal gratings is scale invariant
    Kukkonen, HT
    Rovamo, JM
    Biard, A
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1999, 40 (04) : S43 - S43
  • [3] Illumination invariant segmentation of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    [J]. 16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 617 - 622
  • [4] Scale invariant spatio-temporal patterns of field vole density
    Mackinnon, JL
    Petty, SJ
    Elston, DA
    Thomas, CJ
    Sherratt, TN
    Lambin, X
    [J]. JOURNAL OF ANIMAL ECOLOGY, 2001, 70 (01) : 101 - 111
  • [5] SPATIO-TEMPORAL TRAJECTORY ANALYSIS OF MOBILE OBJECTS FOLLOWING THE SAME ITINERARY
    Etienne, Laurent
    Devogele, Thomas
    Bouju, Alain
    [J]. JOINT INTERNATIONAL CONFERENCE ON THEORY, DATA HANDLING AND MODELLING IN GEOSPATIAL INFORMATION SCIENCE, 2010, 38 : 86 - 91
  • [6] Motion trajectory clustering for video retrieval using spatio-temporal approximations
    Khalid, S
    Naftel, A
    [J]. VISUAL INFORMATION AND INFORMATION SYSTEMS, 2006, 3736 : 60 - 70
  • [7] SPATIO-TEMPORAL RICH MODEL FOR MOTION VECTOR STEGANALYSIS
    Tasdemir, Kasim
    Kurugollu, Fatih
    Sezer, Sakir
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1717 - 1721
  • [8] A MULTISCALE SPATIO-TEMPORAL BACKGROUND MODEL FOR MOTION DETECTION
    Lu, Xiqun
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3268 - 3271
  • [9] Spatio-Temporal GRU for Trajectory Classification
    Liu, Hong-Bin
    Wu, Hao
    Sun, Weiwei
    Lee, Ickjai
    [J]. 2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1228 - 1233
  • [10] Invariant recognition of spatio-temporal patterns in the olfactory system model
    Lysetskiy, M
    Lozowski, A
    Zurada, JM
    [J]. NEURAL PROCESSING LETTERS, 2002, 15 (03) : 225 - 234