A MULTISCALE SPATIO-TEMPORAL BACKGROUND MODEL FOR MOTION DETECTION

被引:0
|
作者
Lu, Xiqun [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Peoples R China
关键词
Multiscale; spatio-temporal; motion detection; background; video surveillance; SUBTRACTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present a multiscale background model for motion detection. The proposed approach follows a nonparametric background modeling paradigm: each location in a dynamic scene collects a set of samples on different spatial scales which occurred in the past time and in the neighborhood. The motion measure of a location on a certain spatial scale hinges on how many samples existed in its context set are perceivably different from the sample at the same location of the incoming frame. The propagation of motion measure across scales and the soft updating scheme make this model applicable to dynamic background. We evaluate the proposed multiscale background model on a benchmark dataset which consists of nearly 90,000 frames in 31 videos representing 6 categories, and the experimental results demonstrate that it can efficiently detect motion in low contrast dynamic scenes.
引用
收藏
页码:3268 / 3271
页数:4
相关论文
共 50 条
  • [1] Background initialisation by spatio-temporal motion estimation
    Varadarajan, Sriram
    Wang, Hui
    Scotney, Bryan
    Nibouche, Omar
    [J]. 2017 14TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2017,
  • [2] MOTION DETECTION IN SPATIO-TEMPORAL SPACE
    LIOU, SP
    JAIN, RC
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1989, 45 (02): : 227 - 250
  • [3] Spatio-temporal model for image motion
    Park, E
    Wohn, K
    [J]. ELECTRONICS LETTERS, 1998, 34 (16) : 1574 - 1575
  • [4] Motion tracking as spatio-temporal motion boundary detection
    Mitiche, A
    Feghali, R
    Mansouri, A
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2003, 43 (01) : 39 - 50
  • [5] Spatio-temporal Gaussian Mixture Model for Background Modeling
    Soh, Youngsung
    Hae, Yongsuk
    Kim, Intaek
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2012, : 360 - 363
  • [6] Adaptive background mixture model with spatio-temporal samples
    Guo, Pengyu
    Zhu, Xiaozhou
    Zhang, Hui
    Zhang, Xiaohu
    [J]. OPTIK, 2019, 183 : 433 - 440
  • [7] A new spatio-temporal background–foreground bimodal for motion segmentation and detection in urban traffic scenes
    Ma’moun Al-Smadi
    Khairi Abdulrahim
    Kamaruzzaman Seman
    Rosalina Abdul Salam
    [J]. Neural Computing and Applications, 2020, 32 : 9453 - 9469
  • [8] Spatio-Temporal Motion Detection for Intelligent Surveillance Applications
    Al-Berry, M. N.
    Salem, M. A. -M.
    Hussein, A. S.
    Tolba, M. F.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2015, 12 (01)
  • [9] MOTION DETECTION BASED ON SPATIO-TEMPORAL SALIENCY PERCEPTION
    Gang-Yan
    Ming-Yu
    Cuihong-Xue
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 948 - 951
  • [10] Spatio-Temporal Action Detection Under Large Motion
    Singh, Gurkirt
    Choutas, Vasileios
    Saha, Suman
    Yu, Fisher
    Van Gool, Luc
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5998 - 6007