Cauchyian Motion: A Spatio-Temporal Scale Invariant Mobile Trajectory Model

被引:0
|
作者
Tsai, I-Fei [1 ]
机构
[1] Hon Hai Res Inst, New Taipei, Taiwan
关键词
Mobility Modeling; Circular Statistics; Exploratory Data Analysis; Goodness of Fit; Time Series;
D O I
10.1109/VTC2023-Fall60731.2023.10333680
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human mobility is a complex phenomenon driven by spatial interactions and temporal dynamics. The study of mobility patterns has far-reaching implications, from designing efficient transportation systems to responding effectively to epidemics. In this paper, a univariate mobility model is developed using circular statistics to abstract human motion. The validity of this model is confirmed through the analysis of a real-world GPS dataset. The wrapped Cauchy distribution, which best-fits the turning angles and detrended bearings, is utilized to extract the distinctive features of straight-oriented shortest-path-first route. The proposed modeling aims to capture the inherent cyclic nature of mobile trajectories. By adjusting the scale parameter, the model can characterize mobility patterns at different spatial and temporal resolutions, thus facilitating accurate analysis, simulation, and prediction of mobile trajectories.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Invariant Recognition of Spatio-Temporal Patterns in The Olfactory System Model
    Mykola Lysetskiy
    Andrzej Lozowski
    Jacek M. Zurada
    [J]. Neural Processing Letters, 2002, 15 : 225 - 234
  • [12] HSTA: A Hierarchical Spatio-Temporal Attention Model for Trajectory Prediction
    Wu, Ya
    Chen, Guang
    Li, Zhijun
    Zhang, Lijun
    Xiong, Lu
    Liu, Zhengfa
    Knoll, Alois
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (11) : 11295 - 11307
  • [13] Challenges of spatio-temporal trajectory datasets
    Arslan, Muhammad
    Cruz, Christophe
    [J]. JOURNAL OF LOCATION BASED SERVICES, 2024, : 302 - 333
  • [14] The continuous spatio-temporal model (CSTM) as an exhaustive framework for multi-scale spatio-temporal analysis
    Van de Weghe, N.
    de Roo, B.
    Qiang, Y.
    Versichele, M.
    Neutens, T.
    de Maeyer, P.
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2014, 28 (05) : 1047 - 1060
  • [15] Trajectory identification based on spatio-temporal proximity patterns between mobile phones
    Higuchi, Takamasa
    Yamaguchi, Hirozumi
    Higashino, Teruo
    [J]. WIRELESS NETWORKS, 2016, 22 (02) : 563 - 577
  • [16] Trajectory identification based on spatio-temporal proximity patterns between mobile phones
    Takamasa Higuchi
    Hirozumi Yamaguchi
    Teruo Higashino
    [J]. Wireless Networks, 2016, 22 : 563 - 577
  • [17] A Three-Scale Model of Spatio-Temporal Bursting
    Franci, Alessio
    Sepulchre, Rodolphe
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (04): : 2143 - 2175
  • [18] An Efficient Dense and Scale-Invariant Spatio-Temporal Interest Point Detector
    Willems, Geert
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION - ECCV 2008, PT II, PROCEEDINGS, 2008, 5303 : 650 - 663
  • [19] SaveDat: Spatio-Temporal Trajectory Compression by LSTM
    Horovitz, Shay
    Cohen, Guy Yosef
    Shmirer, Dan
    Boxer, Shir
    Blumenkrantz, Itai
    Lasry, Mike
    [J]. 2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 442 - 450
  • [20] Spatio-Temporal Trajectory Models For Target Tracking
    Fanaswala, Mustafa
    Krishnamurthy, Vikram
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,