Motion trajectory clustering for video retrieval using spatio-temporal approximations

被引:0
|
作者
Khalid, S [1 ]
Naftel, A [1 ]
机构
[1] Univ Manchester, Sch Informat, Manchester M60 1QD, Lancs, England
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new technique is proposed for clustering and similarity retrieval of video motion clips based on spatio-temporal object trajectories. The trajectories are treated as motion time series and modelled using orthogonal basis polynomial approximations. Trajectory clustering is then carried out to discover patterns of similar object motion behaviour. The coefficients of the basis functions are used as input feature vectors to a Self-Organising Map which can learn similarities between object trajectories in an unsupervised manner. Clustering in the basis coefficient space leads to efficiency gains over existing approaches that encode trajectories as point-based flow vectors. Experiments on pedestrian motion data gathered from video surveillance demonstrate the effectiveness of our approach, Applications to motion data mining in video surveillance databases are envisaged.
引用
收藏
页码:60 / 70
页数:11
相关论文
共 50 条
  • [1] Video clustering using spatio-temporal image with fixed length
    Okamoto, H
    Yasugi, Y
    Babaguchi, N
    Kitahashi, T
    [J]. IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : 53 - 56
  • [2] A spatio-temporal pyramid matching for video retrieval
    Choi, Jaesik
    Wang, Ziyu
    Lee, Sang-Chul
    Jeon, Won J.
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (06) : 660 - 669
  • [3] Feature Pooling Using Spatio-Temporal Constrain for Video Summarization and Retrieval
    Ren, Jie
    Ren, Jinchang
    [J]. ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING: FUTURETECH & MUE, 2016, 393 : 381 - 387
  • [4] Parallel Clustering of Big Data of Spatio-temporal Trajectory
    Hu, Chunchun
    Kang, Xionghua
    Luo, Nianxue
    Zhao, Qiansheng
    [J]. 2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 769 - 774
  • [5] Density based spatio-temporal trajectory clustering algorithm
    Cheng, Zhiyuan
    Jiang, Ling
    Liu, Desheng
    Zheng, Zezhong
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3358 - 3361
  • [6] Video representation and retrieval using spatio-temporal descriptors and region relations
    Chatzis, Sotirios
    Doulamis, Anastasios
    Kosmopoulos, Dimitrios
    Varvarigou, Theodora
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 2, 2006, 4132 : 94 - 103
  • [7] An efficient approach for video retrieval by spatio-temporal features
    Kumar, G. S. Naveen
    Reddy, V. S. K.
    [J]. INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2019, 23 (04) : 311 - 316
  • [8] A Novel Approach to Spatio-Temporal Video Analysis and Retrieval
    Singh, Sameer
    Ren, Wei
    Singh, Maneesha
    [J]. COMPUTER VISION/COMPUTER GRAPHICS COLLABORATION TECHNIQUES, PROCEEDINGS, 2009, 5496 : 106 - +
  • [9] Compressed spatio-temporal descriptors for video matching and retrieval
    Alatas, O
    Javed, O
    Shah, M
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 882 - 885
  • [10] Video retrieval of near-duplicates using κ-nearest neighbor retrieval of spatio-temporal descriptors
    Daniel DeMenthon
    David Doermann
    [J]. Multimedia Tools and Applications, 2006, 30 : 229 - 253