Horseshoe prior Bayesian quantile regression

被引:0
|
作者
Kohns, David [1 ,3 ]
Szendrei, Tibor [2 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
[2] Heriot Watt Univ, Dept Econ, Edinburgh, Scotland
[3] Aalto Univ, Dept Comp Sci, Konemiehentie 2, Espoo, Finland
关键词
global-local prior; growth-at-risk; Monte Carlo; quantile regression; sampling method; VARIABLE SELECTION; LARGE NUMBER; SHRINKAGE; RISK; FORECASTS; SAMPLER; LASSO;
D O I
10.1093/jrsssc/qlad091
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper extends the horseshoe prior to Bayesian quantile regression and provides a fast sampling algorithm for computation in high dimensions. Compared to alternative shrinkage priors, our method yields better performance in coefficient bias and forecast error, especially in sparse designs and in estimating extreme quantiles. In a high-dimensional growth-at-risk forecasting application, we forecast tail risks and complete forecast densities using a database covering over 200 macroeconomic variables. Quantile specific and density calibration score functions show that our method provides competitive performance compared to competing Bayesian quantile regression priors, especially at short- and medium-run horizons.
引用
收藏
页码:193 / 220
页数:28
相关论文
共 50 条
  • [21] Bayesian lasso binary quantile regression
    Dries F. Benoit
    Rahim Alhamzawi
    Keming Yu
    [J]. Computational Statistics, 2013, 28 : 2861 - 2873
  • [22] Bayesian joint-quantile regression
    Hu, Yingying
    Wang, Huixia Judy
    He, Xuming
    Guo, Jianhua
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (03) : 2033 - 2053
  • [23] Bayesian reciprocal LASSO quantile regression
    Alhamzawi, Rahim
    Mallick, Himel
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6479 - 6494
  • [24] Bayesian semiparametric additive quantile regression
    Waldmann, Elisabeth
    Kneib, Thomas
    Yue, Yu Ryan
    Lang, Stefan
    Flexeder, Claudia
    [J]. STATISTICAL MODELLING, 2013, 13 (03) : 223 - 252
  • [25] Variational Bayesian Tensor Quantile Regression
    Yunzhi Jin
    Yanqing Zhang
    [J]. Acta Mathematica Sinica,English Series, 2025, (02) : 733 - 756
  • [26] Bayesian Quantile Regression for Censored Data
    Reich, Brian J.
    Smith, Luke B.
    [J]. BIOMETRICS, 2013, 69 (03) : 651 - 660
  • [27] Bayesian Semiparametric Modelling in Quantile Regression
    Kottas, Athanasios
    Krnjajic, Milovan
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (02) : 297 - 319
  • [28] Bayesian joint-quantile regression
    Yingying Hu
    Huixia Judy Wang
    Xuming He
    Jianhua Guo
    [J]. Computational Statistics, 2021, 36 : 2033 - 2053
  • [29] Bayesian Quantile Regression for Ordinal Models
    Rahman, Mohammad Arshad
    [J]. BAYESIAN ANALYSIS, 2016, 11 (01): : 1 - 24
  • [30] Bayesian quantile regression for streaming data
    Xie, Xiaoyue
    Tian, Zixuan
    Shi, Jian
    [J]. AIMS MATHEMATICS, 2024, 9 (09): : 26114 - 26138