Horseshoe prior Bayesian quantile regression

被引:0
|
作者
Kohns, David [1 ,3 ]
Szendrei, Tibor [2 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
[2] Heriot Watt Univ, Dept Econ, Edinburgh, Scotland
[3] Aalto Univ, Dept Comp Sci, Konemiehentie 2, Espoo, Finland
关键词
global-local prior; growth-at-risk; Monte Carlo; quantile regression; sampling method; VARIABLE SELECTION; LARGE NUMBER; SHRINKAGE; RISK; FORECASTS; SAMPLER; LASSO;
D O I
10.1093/jrsssc/qlad091
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper extends the horseshoe prior to Bayesian quantile regression and provides a fast sampling algorithm for computation in high dimensions. Compared to alternative shrinkage priors, our method yields better performance in coefficient bias and forecast error, especially in sparse designs and in estimating extreme quantiles. In a high-dimensional growth-at-risk forecasting application, we forecast tail risks and complete forecast densities using a database covering over 200 macroeconomic variables. Quantile specific and density calibration score functions show that our method provides competitive performance compared to competing Bayesian quantile regression priors, especially at short- and medium-run horizons.
引用
下载
收藏
页码:193 / 220
页数:28
相关论文
共 50 条
  • [11] Bayesian Spatial Quantile Regression
    Reich, Brian J.
    Fuentes, Montserrat
    Dunson, David B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 6 - 20
  • [12] Bayesian composite quantile regression
    Huang, Hanwen
    Chen, Zhongxue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3744 - 3754
  • [13] BAYESIAN QUANTILE REGRESSION METHODS
    Lancaster, Tony
    Jun, Sung Jae
    JOURNAL OF APPLIED ECONOMETRICS, 2010, 25 (02) : 287 - 307
  • [14] Regression Adjustment for Noncrossing Bayesian Quantile Regression
    Rodrigues, T.
    Fan, Y.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 275 - 284
  • [15] Bayesian Tobit quantile regression using g-prior distribution with ridge parameter
    Alhamzawi, Rahim
    Yu, Keming
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (14) : 2903 - 2918
  • [16] Bayesian composite Tobit quantile regression
    Alhusseini, Fadel Hamid Hadi
    Georgescu, Vasile
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (04) : 727 - 739
  • [17] Bayesian quantile regression with approximate likelihood
    Feng, Yang
    Chen, Yuguo
    He, Xuming
    BERNOULLI, 2015, 21 (02) : 832 - 850
  • [18] BAYESIAN EMPIRICAL LIKELIHOOD FOR QUANTILE REGRESSION
    Yang, Yunwen
    He, Xuming
    ANNALS OF STATISTICS, 2012, 40 (02): : 1102 - 1131
  • [19] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    Statistics in Biosciences, 2016, 8 (2) : 358 - 373
  • [20] bayesQR: A Bayesian Approach to Quantile Regression
    Benoit, Dries F. .
    van den Poel, Dirk
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (07): : 1 - 32