Horseshoe prior Bayesian quantile regression

被引:0
|
作者
Kohns, David [1 ,3 ]
Szendrei, Tibor [2 ]
机构
[1] Aalto Univ, Dept Comp Sci, Espoo, Finland
[2] Heriot Watt Univ, Dept Econ, Edinburgh, Scotland
[3] Aalto Univ, Dept Comp Sci, Konemiehentie 2, Espoo, Finland
关键词
global-local prior; growth-at-risk; Monte Carlo; quantile regression; sampling method; VARIABLE SELECTION; LARGE NUMBER; SHRINKAGE; RISK; FORECASTS; SAMPLER; LASSO;
D O I
10.1093/jrsssc/qlad091
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper extends the horseshoe prior to Bayesian quantile regression and provides a fast sampling algorithm for computation in high dimensions. Compared to alternative shrinkage priors, our method yields better performance in coefficient bias and forecast error, especially in sparse designs and in estimating extreme quantiles. In a high-dimensional growth-at-risk forecasting application, we forecast tail risks and complete forecast densities using a database covering over 200 macroeconomic variables. Quantile specific and density calibration score functions show that our method provides competitive performance compared to competing Bayesian quantile regression priors, especially at short- and medium-run horizons.
引用
收藏
页码:193 / 220
页数:28
相关论文
共 50 条
  • [31] Bayesian variable selection in quantile regression
    Yu, Keming
    Chen, Cathy W. S.
    Reed, Craig
    Dunson, David B.
    [J]. STATISTICS AND ITS INTERFACE, 2013, 6 (02) : 261 - 274
  • [32] Bayesian adaptive Lasso quantile regression
    Alhamzawi, Rahim
    Yu, Keming
    Benoit, Dries F.
    [J]. STATISTICAL MODELLING, 2012, 12 (03) : 279 - 297
  • [33] A BAYESIAN APPROACH TO ENVELOPE QUANTILE REGRESSION
    Lee, Minji
    Chakraborty, Saptarshi
    Su, Zhihua
    [J]. STATISTICA SINICA, 2022, 32 : 2339 - 2357
  • [34] Bayesian lasso binary quantile regression
    Benoit, Dries F.
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2861 - 2873
  • [35] Bayesian Endogenous Tobit Quantile Regression
    Kobayashi, Genya
    [J]. BAYESIAN ANALYSIS, 2017, 12 (01): : 161 - 191
  • [36] Gibbs sampling methods for Bayesian quantile regression
    Kozumi, Hideo
    Kobayashi, Genya
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1565 - 1578
  • [37] Brq: an R package for Bayesian quantile regression
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    [J]. METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2020, 78 (03): : 313 - 328
  • [38] Bayesian Quantile Regression for Big Data Analysis
    Chu, Yuanqi
    Hu, Xueping
    Yu, Keming
    [J]. NEW FRONTIERS IN BAYESIAN STATISTICS, BAYSM 2021, 2022, 405 : 11 - 22
  • [39] Automatic Bayesian quantile regression curve fitting
    Chen, Colin
    Yu, Keming
    [J]. STATISTICS AND COMPUTING, 2009, 19 (03) : 271 - 281
  • [40] Quantile Regression Neural Networks: A Bayesian Approach
    Jantre, S. R.
    Bhattacharya, S.
    Maiti, T.
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2021, 15 (03)